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Beyond borders: evaluating the suitability of
spatial adjacency for small-area estimation

Adam Howes∗,†,¶, Jeffrey W. Eaton‡,†, Seth R. Flaxman§

Abstract. Spatial correlation between small-areas is typically accounted for us-
ing spatial random effects. However, commonly used models for spatial random
effects based upon adjacency relations, like the Besag model, make unrealistic
spatial assumptions for geometries which are not a grid. Furthermore, they do
not take into account areal data is commonly generated by aggregating continu-
ous geostatistical data. Defining spatial random effects which instead correspond
to aggregated Gaussian processes gives a more intuitively convincing correlation
structure, and allows tools from kernel methods to be used in models for areal
data.

In a simulation study, we used a proper scoring rule to evaluate the performance of
different spatial random effect specifications. The simulations were performed un-
der model misspecification and across a range of vignette and realistic geometries
with different regularities. We also compared model performance in estimating
district-level HIV prevalence from PHIA household survey data across four coun-
tries in sub-Saharan Africa, using cross-validation and spatial cross-validation.

The results of this analysis are forthcoming, and will be described here.

1 Introduction

Spatial random effects are frequently used to model spatial variation in areal data
(Haining, 2003; Cramb et al., 2018). The most common class of models used to specify
spatial random effects are Gaussian Markov random fields (GMRFs). These models
combine a Gaussian distribution with Markov conditional independence assumptions
between areas (Rue and Held, 2005). It is assumed that observations made in areas close
together are correlated, and more distant relationships are ignored. Perhaps the simplest
GMRF model is that of Besag et al. (1991), where information is borrowed equally from
each adjacent area. This model is attractive as it requires minimal additional modelling
choices and is widely implemented. As such, it has seen widespread use, including in
agriculture (Oliver and Gregory, 2015), ecology (Saracco et al., 2010), epidemiology
(Lawson, 2013), image analysis (Schmid et al., 2006), neuroscience (Gössl et al., 2001)
and public health (Dwyer-Lindgren et al., 2015). However, for irregular geometries like
the administrative divisions of a country, the assumptions made by the Besag model
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about space are unrealistic. We test the hypothesis that using more realistic assumptions
about spatial structure improves the performance of small-area estimation models. In
doing so, we provide practical recommendations and further understanding of models
for spatial structure.

Our motivating application is the small-area estimation of HIV epidemic indicators in
sub-Saharan Africa. These estimates are required to help plan, implement, and evaluate
the success of programmes, ensuring that available resources are most effectively used to
respond to the epidemic (Hallett et al., 2016; Cuadros et al., 2017). Household surveys
provide nationally represenative data about the general population, but are expensive
to carry out, and as such have small sample sizes at a district level. Although auxiliary
covariates can be used to aid estimation, data on the covariates most strongly associ-
ated with HIV, such as sexual risk behaviour (Howes et al., 2023) or the prevalence
of male circumcision, often face similar measurement difficulties. Potentially as a re-
sult, models including covariates have only been found to modestly improve predictions
(Dwyer-Lindgren et al., 2019, Supplementary Figure 20). In contrast, covariates do see
substantial use for mapping other infectious diseases, like Malaria where transmission
is driven by more predictive and easily-measurable environmental factors (Weiss et al.,
2015). These circumstances foreground the importance of models for spatial structure
in HIV mapping.

Within the GRMF framework, attempts to more accurately reflect irregular spatial
structure have defined weights specifying the extent to which neighbours are related.
Duncan et al. (2017) compared seventeen methods for specifying these weights, but did
not find any which outperform the Besag model. This conclusion was specific to the
often-analysed Scottish lip cancer example, and based on the deviance information cri-
teria (DIC) recommended against by Vehtari et al. (2017). Another approach is to take
into account that areal data is typically produced by aggregating higher resolution data.
Obtaining inference about a variable at a different resolution to that it was observed
at is known in geostatistics as the change-of-support problem (Gelfand et al., 2001),
and dates to foundational work on block kriging (Krige, 1951; Matheron, 1976). Kelsall
and Wakefield (2002) applied ideas from change-of-support modelling to consider areal
data as coming about by an aggregation of a continuously-indexed Gaussian process,
resulting in a covariance structure between two areas given by the average covariance
between two points chosen randomly from those areas. This type of model is particularly
natural in the log-Gaussian Cox process modelling framework (Li et al., 2012; Diggle
et al., 2013; Taylor et al., 2015; Johnson et al., 2019). Inference for aggregated data
has recently been advanced by Wilson and Wakefield (2018) who consider the SPDE
approach of Lindgren et al. (2011), using R-INLA, and an empirical Bayes approach, us-
ing TMB (Kristensen et al., 2016), and made available as a part of the disaggregation
package (Nandi et al., 2023).

Spatial heterogeneity commonly reflects a combination of both spatially correlated
processes and specific circumstances at a given area. It is usually therefore recom-
mended to use a spatial random effect specification which includes both structured and
unstructured components, such as the BYM2 model (Simpson et al., 2017) or earlier
convolutions such as the BYM (Besag et al., 1991), Leroux (Leroux et al., 2000) or Dean
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(Dean et al., 2001) models. Evidence for this recommendation includes the comparison
studies of Lee (2011) and Riebler et al. (2016). Any improvement to the Besag model
is likely directly transferable to improving these convolution models, and both are of
substantive practical interest. For example, the Naomi HIV small-area estimation model
(Eaton et al., 2021) uses both Besag and BYM2 random effects.

The remainder of this paper is organised as follows. Section 2 provides background on
areal data and the Bayesian hierarchical modelling approach to small-area estimation.
In Section 3, we review developments in specifying spatial random effects based on
adjacency, before presenting an alternative approach based on kernels in Section 4.
In Section 5 we present a simulated case-study, before moving on to mapping HIV
prevalence in sub-Saharan Africa in Section 6. Finally, we discuss our conclusions and
directions for future research in Section 7.

2 Background

2.1 Areal and geostatistical spatial data

Let S ⊂ R2 be the study region, and the disjoint areas {Ai}ni=1 be a spatial partition
of S such that Ai ∩ Aj = ∅ and ∪n

i=1Ai = S. Areal data are a type of spatial data
where observations yi ∈ Y are associated to areas Ai. Examples of areal data include
the colour of a pixel, the minimum wage in a state, and the number of disease cases in a
region. Geostatistical data are another type of spatial data where instead observations
y(s) ∈ Y can be made at any location s ∈ S of a spatially-continuous stochastic process.
Examples of geostatistical spatial data include the temperature at a monitoring station,
the response to a household survey, and the quality of a soil sample. Areal data may
often be conceptualised as arising from aggregation of geostatistical data, such that
yi =

∫
Ai

y(s)ds. Notable exceptions include policies determined at an administrative
level, such as the minimum wage or disease control measures.

In some situations it may be preferable to work using aggregated areal data rather
than the underlying geostatistical data. For one, the geostatistical data may be unavail-
abile or inaccessible due to privacy constraints, administrative practicality or limitations
in storage capacity. Alternatively, opting to model at the area-level can be advantageous:
models for geostatistical data tend to be more complex, require more data, have higher
computational burden, and offer less immediate applicability to policy. Under some cir-
cumstances, seemingly geostatistical data may truly be areal, as with data observed at
polling stations or health facilities which individuals from the surrounding area travel
to. Ultimately, the decision to model the data generating mechanism as either areal
or geostatistical is often a matter of practical considerations and pragmatism. This is
reflected in the variety of approaches taken by modellers.

2.2 Small-area estimation

Auto-correlation is an important property of most spatial processes. Usually, outcomes
for locations close together in space tend to be more similar than those far apart,
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known as “Tobler’s first law of geography” (Tobler, 1970). This property presents both

a challenge and an opportunity. Each observation provides less information than it

would have had the samples been independent, making it more difficult to estimate

global parameters. On the other hand, spatial correlation can be used to improve local

parameter estimates, indexed by a particular spatial location, especially in parts of the

study region where little to no information is available.

The latter benefit is basis for the statistical task of small-area estimation, which

aims to produce reliable local estimates where small sample sizes lead to noisy data

(Pfeffermann et al., 2013). In a spatial setting, this is often in small geographic areas.

However, the phrase “small-area” is not restricted to geographic areas and may be

interpreted more broadly to mean any area where data are insufficient to make accurate

local parameter inferences. For example, in the context of multilevel regression and

post-stratification (Gelman and Little, 1997), small-areas arise by the intersection of

demographic variables like age, gender and race, alongside geographic variables. Because

of the cost of gathering samples, a survey may be designed to give reliable estimates

at at an aggregate level but not at a small-area level. Although direct estimators of

local parameters are unbiased, when data are sparse the total error may be reduced by

accepting some bias in exchange for reduced variance using so-called indirect estimators.

Smoothing approaches use information from similar units to “borrow strength” from

one parameter to another. Determining precisely what is meant by “similar” a central

challenge. See Wakefield et al. (2020) for a recent review of both design-based and

model-based approaches to small-area estimation of health-indicators, including both

area and unit-level analysis.

2.3 Bayesian model-based approach and latent Gaussian models

Bayesian hierarchical models are an attractive framework for small-area estimation.

Let [n] denote 1, . . . , n. Areal data y = (yi)i∈[n] may be modelled using a three-layer

structure (Berliner, 1996; Cressie and Wikle, 2015; Rao and Molina, 2015) given by

(Observations) y ∼ p(y |x,θ1), (2.1)

(Latent field) x ∼ p(x |θ2), (2.2)

(Parameters) (θ1,θ2) = θ ∼ p(θ), (2.3)

where x = (xi)i∈[N ] is a N -dimensional latent field, and θ = (θi)i∈[m] are the m-

dimensional hyperparameters, with m < N . Small-area estimation models are usually

descriptive rather than mechanistic, so a natural choice is to model the large latent field

with a flexible and computationally efficient Gaussian distribution x ∼ N (µ,Q) with

mean vector µ and precision matrix Q. Three-layer models with Gaussian latent fields

have been collectively studied as latent Gaussian models (LGMs) (Rue et al., 2009) and

comprise a wide array of popular models, including generalised linear mixed models.
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2.4 Spatial random effects

The observations in an LGM are conditionally independent and identically distributed
given linear predictors η = (η)i∈[n] such that

p(y | x,θ1) = p(y | η,θ1) =
n∏

i=1

p(yi | ηi,θ1).

Each linear predictor ηi is constructed from the Gaussian latent field such that

ηi = β0 +

p∑
l=1

βjzji +

r∑
k=1

fk(uki),

where the intercept β0, linear effects βj of the covariates zji, and functions fk(·) of the
covariates uki are each Gaussian and may be collected into x. The conditional mean
E(yi | ηi) is given by g(ηi) where g : R → Y is an inverse link function

Spatial random effects ϕ(·) are a Gaussian function, whose role is to capture the spa-
tial structure between areas not already accounted for by the intercept and linear effects
of the covariates β0+

∑p
l=1 βjzji. Should no spatial structure remain, then independent

and identically distributed (IID) random effects ϕi ∼ N (0, τ−1
ϕ ) may be appropriate,

where τϕ is a shared precision. Exploratory data analysis techniques such as visual in-
spection or Moran’s I coefficient (Cliff and Ord, 1981) may be used to determine if there
remains any spatial auto-correlation in the data. Specifying ϕ = (ϕi)i∈[n] amounts to
specifying the entries of a precision or covariance matrix, as we discuss in the following
sections.

3 Spatial random effects defined using adjacency

3.1 Besag

Spatial structure can be encoded using a symmetric relation between areas. Let i ∼ j
if the areas Ai and Aj are adjacent or neighbouring. Adjacency is often defined by
a shared border, though other choices are possible (Paciorek et al., 2013). The Besag
model (Besag et al., 1991) is an improper conditional auto-regressive (ICAR) model
where the full conditional distribution of the ith spatial random effect is given by

ϕi |ϕ−i ∼ N

 1

nδi

∑
j:j∼i

ϕj ,
1

nδiτϕ

 , (3.1)

where δi is the set of neighbours of Ai with cardinality nδi = |δi| and ϕ−i is the vector of
spatial random effects with the ith entry removed. The conditional mean of the random
effect ϕi is the average of its neighbours {ϕj}j∼i and the precision nδiτϕ is proportional
to the number of neighbours nδi. By Brook’s lemma (Rue and Held, 2005, Chapter 2)
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Geography Graph

Figure 1: A map of the districts of Zimbabwe together with the corresponding adjacency
graph structure G. The Besag model operates on the adjacency graph, rather than the
geometry.

the set of full conditionals of the Besag model are equivalent to the Gaussian Markov
random field (GMRF) given by

ϕ ∼ N (0, τ−1
ϕ R−), (3.2)

where R− is the generalised inverse of the rank-deficient structure matrix R, so-called
because it defines the structure of the precision matrix, with entries

Rij =


nδi, i = j

−1, i ∼ j

0, otherwise.

(3.3)

The Markov property arises due to the conditional independence structure p(ϕi |ϕ−i) =
p(ϕi |ϕδi) whereby each area only depends on its neighbours. This is reflected in the
sparsity of R such that ϕi ⊥ ϕj |ϕ−ij if and only if Rij = 0. The structure matrix R
may also be expressed as the Laplacian of the adjacency graph G = (V, E) with vertices
v ∈ V corresponding to each area and edges e ∈ E between vertices i and j when
i ∼ j. Figure 1 shows the adjacency graph for the districts of Zimbabwe alongside the
geometry. In Section 3.2 we will discuss the appropriateness of using the graph rather
than the complete geometry.

Rewriting Equation 3.2, the probability density function of ϕ is

p(ϕ) ∝ exp
(
−τϕ

2
ϕ⊤Rϕ

)
∝ exp

−τϕ
2

∑
i∼j

(ϕi − ϕj)
2

 . (3.4)

This density is a function of the pairwise differences ϕi − ϕj and so is invariant to the
addition of a constant c to each entry p(ϕ) = p(ϕ+c1), leading to an improper uniform
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(i)

1 2 3

(ii)

1 2 3

(iii)

1 2 3

(iv)

1 2 3

Figure 2: Each of these four geometries have the same adjacency graph.
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· · ·

Figure 3: A sequence of geometries where the number of neighbours of area one grows
by one at each iteration.

distribution on the average of the ϕi. If G is connected, in that by traversing the edges,
any vertex can be reached from any other vertex, then there is only one impropriety in
the model and rank(R) = n − 1, while if G is disconnected, and composed of nc ≥ 2
connected components with index sets I1, . . . , Inc

, then the corresponding structure
matrix R has rank n− nc and the density is invariant to the addition of a constant to
each of the connected components p(ϕI) = p(ϕI + c1) where I = I1, . . . , Inc .

3.2 Concerns about the Besag model’s representation of space

The Besag model was originally proposed for use in image analysis, where areas corre-
spond to pixels arranged in a regular lattice structure. Since then, it has seen wider use,
including in situations, like our work mapping HIV, where the spatial structure is less
regular. We have a number of concerns about the model’s applicability to this broader
setting. This discussion is closely linked to the modifiable areal unit problem (Open-
shaw and Taylor, 1979), whereby statistical conclusions change as a result of seemingly
arbitrary changes in data aggregation, as well as the challenge of ecological inference
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(i)

1 2 3 4

(ii)

1 2 3 4 5 6

Figure 4: Each of the shaded areas are split into two moving from geometry (i) to (ii).

and the ecological fallacy (Wakefield and Lyons, 2010).

Adjacency compression

Summarising a geometry by an adjacency graph represents a loss of information. Many
geometries share the same adjacency graph, and are as such isomorphic identical under
the Besag model (Figure 2). This is not in itself a problem, but does prompt considera-
tion as to whether the class of geometries with the same adjacency graph is sufficiently
similar to merit identical models.1 Intuitively, the more regular the spatial structure,
the less information is lost in compression to an adjacency graph. In image analysis,
very little spatial information is lost in compression of a lattice structure to an adja-
cency graph. On the other hand, the regions of a country, determined by political and
geographic forces, tend to display greater irregularity. The appropriateness of adjacency
compression therefore varies by the type of geometry common to the application setting.

Mean structure

In the Besag model is all adjacent areas count equally. This assumption is unsatisfying:
for most geometries, we expect different amounts of correlation between neighbours.
Figure 2 illustrates a number of heuristic features for neighbour importance, including
length of shared border, and the proximity of centers of mass. More general weighted
ICAR models remedy this problem, as we outline in Section 3.3.

Variance structure

In Equation 3.1 the precision of ϕi is proportional to its number of neighbours nδi. It
follow that as nδi → ∞ then Var(ϕi) → 0. This is illustrated by Figure 3 where the area
on the right is repeatedly divided such that its number of neighbours increases. This
property is a consequence of averaging the conditional mean over a greater number of
areas, which, in certain situations, can correspond to a greater amount of information.
However, if the amount of information in the shaded area remains fixed, it is inappro-
priate that Var(ϕ1) should tend to zero as a result of drawing additional, arbitrary,

1The regularity of realistic geometries may help to constrain each class to be more similar than
it strictly has to be. In other words, although pathological geometries can be constructed, they are
implausible in statistical practise and so not of great concern to us here.
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boundaries. In the image analysis setting this modelling assumption is reasonable: each
pixel represents a fixed amount of information and a higher pixel density represents a
greater amount of information. On the other hand, in public health and epidemiology,
drawing boundaries to create additional areas is not expected to correspond to a greater
amount of information.

Suppose we fit a Besag model upon identical data using each of the two geometries
in Figure 4. If the spatial variation is relatively smooth, dividing the shaded areas into
two will result in a lower estimated variance σ2

ϕ in geometry (ii) as compared with
geometry (i) because there will appear to be less variation between neighbouring areas.
This problem does not only apply locally: since the effect of σ2

ϕ applies everywhere, the
smoothing will change even in unaltered parts of the study region.

3.3 Weighted ICAR

The Besag model is a special case of a more general class of (zero-mean) ICAR models
in which each neighbour may not be weighted equally. These models can be speci-
fied in terms of scaled weights {bij}j∼i and a precision vector κ = (κi)i∈[n] such that
ϕi |ϕ−i ∼ N (

∑
j:j∼i bijϕj , (κiτϕ)

−1). The structure matrix R corresponding to the
above full conditionals is given by R = Dκ(I − B), where B has the entries bij for
i ∼ j, diagonal entries bii = 0 and bij = 0 for i ≁ j and the matrix Dκ is given
by diag(κ1, . . . , κn). As the structure matrix is symmetric we must have the condi-
tion −bijκi = −bjiκj . To meet this condition, it is often simpler to use an unscaled
weights matrix W = DκB such that R = Dκ −W. For example, in the Besag model
W corresponds to the adjacency matrix. The scaled weights can then be recovered by
bij = wij/κi where κi =

∑
k:k∼i wik. A thorough discussion of methods for specifying

W is provided by Duncan et al. (2017). Much of the work in this area focuses on the
case where the geometry is a lattice.

3.4 BYM2

Often, as well as spatial structure, there exists IID over-dispersion in the residuals and
it is inappropriate to use purely spatially structured random effects in the model. The
Besag-York-Mollié (BYM) model of Besag et al. (1991), accounts for this in a natural
way by decomposing the spatial random effect ϕ = v+u into a sum of an unstructured
IID component v and a spatially structured Besag component u, each of which with
their own respective precision parameters τv and τu. The resulting distribution is

ϕ ∼ N (0, τ−1
v I+ τ−1

u R−). (3.5)

Including both v and u is intended to enable the model to learn the relative extent of the
unstructured and structured components via τv and τu. However, in this specification,
scaling of the Besag precision matrix Q is not taken into account despite this issue
being particularly pertinent when dealing with multiple sources of noise. In particular,
placing a joint prior (τu, τv) ∼ p(τu, τv) which doesn’t privilege either component is
more easily accomplished if Q and I have the same scale. Additionally, supposing we
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have a prior belief that the over-dispersion is primarily IID and v accounts for the
majority of the dispersion, then it is not immediately obvious how to represent this belief
using p(τu, τv), without inadvertently altering the prior about the overall variation. This
highlights identifiability issues of the parameters (τu, τv) resulting from them not being
orthogonal. Building on the models of Leroux et al. (2000) and Dean et al. (2001) which
tackle this the identifiability problem, but do not scale the spatially structured noise,
Simpson et al. (2017) propose a reparameterisation (τv, τu) 7→ (τϕ, π) of the BYM model
known as the BYM2 model and given by

ϕ =
1

τϕ

(√
1− π v +

√
π u⋆

)
, (3.6)

where τϕ is the marginal precision of ϕ, π ∈ [0, 1] gives the proportion of the marginal
variance explained by each component, and u⋆ is a scaled version of u with precision
matrix given by the scaled structure matrixR⋆ (see Appendix). When π = 0 the random
effects are IID, and when π = 1 the random effects follow the Besag model. To borrow
an analogy (Rue) the parameterisation (τv, τu) is like having one hot water and one cold
water tap, whereas the parameterisation (τϕ, π) is like a mixer tap where the amount
of water and its temperature can be adjusted separately.

4 Spatial random effects defined using kernels

4.1 Areal kernels

In the previous section we reviewed ways to construct spatial random effect precision
matrices using an adjacency relation. Another approach is to define the covariance
matrix using an areal kernel function which gives a measure of similarity between two
areas K : P(S)×P(S) → R, where P denotes the power set such that P(S) is the space
of subsets of the study region. If K is positive semi-definite, then we define areal kernel
spatial random effects by

ϕ ∼ N
(
0,

1

τϕ
K

)
, (4.1)

where the n×n Gram matrix K with entries Kij = K(Ai, Aj) is a valid covariance ma-
trix. We place τϕ outside of the Gram matrix, analogous to the relation of the precision
and structure matrices. Most well-known spatial process models define the correlation
structure between a pair of points using a kernel k : S × S → R. We consider a sim-
ple method to construct K from k: namely averaging the kernel k computed on some
collection of points from within each area.

4.2 Centroid kernel

The simplest approach is to use a single point such thatK(Ai, Aj) = k(pi, pj). A natural
choice is the centroid pi = ci, given by the arithmetic mean of the latitude and longitude,
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Random Hexagonal Regular

Figure 5: Three ways to choose nodes with Li = 10 for all i in Malawi, as implemented
by sf::st sample.

which may be representative of the area.2 This results in the centroid kernel

K(Ai, Aj) = k(ci, cj). (4.2)

The centroid kernel has been used in environmental epidemiology (Wakefield and Morris,
1999) and to model the reproduction number of COVID-19 (Teh et al., 2021).

4.3 Integrated kernel

Rather than choosing a single representative point, an alternative is to represent the
whole area by integrating the kernel over the areas of interest. This results in the
integrated kernel

K(Ai, Aj) =
1

|Ai||Aj |

∫
Ai

∫
Aj

k(s, s′)dsds′. (4.3)

This covariance structure is equivalent to that obtained by aggregating a spatially con-
tinuous Gaussian process with kernel k over the areal partition, and has been studied
in the machine learning literature under the name aggregated Gaussian processes (Law
et al., 2018; Tanaka et al., 2019; Yousefi et al., 2019; Hamelijnck et al., 2019). Unlike
for the centroid kernel where Kii = 1 for all i, the marginal variance of the ith spatial
random effect Kii = K(Ai, Ai) varies depending on the area: becoming smaller for more
compact areas and larger for areas which are of greater extent or more spread out.

Accounting for heterogeneity

Additional information accounting for heterogeneity over Ai may be incorporated into
the integrated kernel3 This can be accomplished using weighting distributions {Wi}

2Note it is not guaranteed for the centroid to (even) lie within the area i.e. we may have ci /∈ Ai.
3Analogously, weighted centroids could also be used in the centroid kernel.
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which represent an unequal contribution of each point to the similarity measure, to give
a weighted integrated kernel

K(Ai, Aj) =
1

|Ai||Aj |

∫
Ai

∫
Aj

wi(s)wj(s
′)k(s, s′)dsds′, (4.4)

This may be useful in disease mapping, where we expect regions with populations who
live close to their shared border to be more strongly correlated than regions whose
populations live far apart, which could be accounted for by weighting according to a
high resolution measure of population density.

Computation

Most of the time we do not expect to be able to calculate Equation 4.4 analytically.

Instead, given n collections of Li samples {s(i)l }Li

l=1 ∼ U(Ai) drawn uniformly from each
area then the integral may be approximated using Monte Carlo by the double sum

K(Ai, Aj) ≈
1

LiLj

Li∑
l=1

Lj∑
m=1

wi

(
s
(i)
l

)
wj

(
s(j)m

)
k
(
s
(i)
l , s(j)m

)
. (4.5)

Equivalently, samples drawn from Wi may be used without weighting by wi(s). Nodes
may also be selected deterministically to give a numerical quadrature estimate of the
kernel. These approaches require O(

∑n
i=1

∑n
j=1 LiLj) evaluations of the kernel k to

compute the n×n Gram matrix K. This imposes a significant computational cost if the
Gram matrix is often recomputed during inference, as is the case in MCMC when any of
the kernel hyperparameters are learnt, placing a limit on the number of samples or nodes
it is feasible to use. Kelsall and Wakefield (2002) make inference more feasible by using
a discrete hyperparameter prior to reduce the number of Gram matrix constructions
and inversions required.

Mismatch to data generating process

Aggregation via the integrated kernel occurs at the level of the latent field rather than
at the level of the data. If the link function g is the identity or linear then aggregation
at the level of the latent field is equivalent to aggregation at the level of the data. On
the other hand, for non-linear link functions g such as the commonly used exponential
or logistic, the generative model does not match the proposed data generating process.

Log-Gaussian Cox processes

The log-Gaussian Cox Process framework (Diggle et al., 2013) arrives naturally at the
integrated kernel formulation. A Cox process is an inhomogeneous Poisson process with
a continuous stochastic intensity function {x(s), s ∈ S} such that conditional on the
realisation of x(s) the number of points in any area Ai follows a Poisson distribution.
The rate parameter of this Poisson distribution is explicitly aggregated as follows

yi |x(s) ∼ Poisson

(∫
s∈Ai

x(s)ds

)
. (4.6)
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Simulation model Additional details

S1 IID ϕ ∼ N (0, In)
S2 Besag ϕ ∼ N (0, (R⋆)−) as described in Section 3.1 where R⋆ is the

scaled structure matrix
S3 IK ϕ ∼ N (0,K⋆) as described in Section 4.3 where Kij is calculated

via Equation 4.5 using the Matérn kernel with ν = 3/2, l = 2.5
and Li = 100 samples are drawn uniformly from each area. Like
the Besag model, we scaled the Gram matrix to have generalised
variance one

Table 1: The three simulation models from which we generate ϕ.

In a LGCP the log intensity log x(s) = η(s) is modelled using a Gaussian process prior

η(s) ∼ GP(µ(s), k(s, s′)). Johnson et al. (2019) obtain Equation 4.4 by considering a

discrete Poisson log-linear mixed model approximation to a continuous LGCP, whereby

η(s) is approximated by a piecewise constant ηi = µi + ϕi in each area Ai. The ith

discrete spatial random effect is then ϕi =
∫
Ai

wi(s)ϕ(s)ds, with covariance structure

Cov

(∫
Ai

wi(s)ϕ(s)ds,

∫
Aj

wj(s
′)ϕ(s′)ds′

)
=

∫
Ai

∫
Aj

wi(s)wj(s
′)k(s, s′)dsds′, (4.7)

corresponding to an areal integrated kernel with a logarithmic link function and Poisson

likelihood.

Disaggregation regression

Disaggregation regression, also known as downscaling or interpolation, is another closely

related approach. Rather than focusing on the aggregate nature of areal observations as

primarily a route towards better area-level estimates, disaggregation regression aims to

produce high-resolution or point-level estimates from areal observations (Utazi et al.,

2019; Nandi et al., 2023).

5 Simulation study

We tested the ability of inferential models with varying spatial random effect speci-

fications to accurately recover small-area quantities. The data and modelling choices

were designed with a spatial epidemiology setting in mind. The R (R Core Team, 2021)

code used is available from github.com/athowes/beyond-borders. We used orderly

(FitzJohn et al., 2022) for reproducible research, ggplot2 for data visualisation (Wick-

ham, 2016) and rticles (Allaire et al., 2022a) for reporting via rmarkdown (Allaire

et al., 2022b).
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Figure 6: The seven simulation geometries that we considered.

5.1 Synthetic data-sets

To study robustness to spatial misspecification we simulated synthetic data-sets from
three known data generating processes, using spatial random effects ϕ generated ac-
cording to IID, Besag and integrated kernel (IK) simulation models (Table 1). We
then generated synthetic data y = (yi)i∈[n] of a form analogous to a household survey
whereby yi ∼ Bin(mi, ρi) where the probabilities ρi ∈ [0, 1] are linked to the linear
predictors ηi ∈ R via

log

(
ρi

1− ρi

)
= ηi = β0 + ϕi, i ∈ [n]. (5.1)

The sample sizes were fixed as mi = 25 for all i ∈ [n], the intercept parameter as
β0 = −2 and the spatial random effect precision parameter as τϕ = 1. We used seven
different geometries including the four vignette geometries sharing an adjacency graph
(Figure 2), as well as three more realistic geometries, a 6×6 lattice grid, the 33 districts
of Côte d’Ivoire and the 36 congressional districts of Texas (Figure 6). The realistic
geometries were chosen to represent plausible variation over spatial regularity for the
small-area estimation setting, allowing us to test how model performance varies by
geometry regularity. For each combination of spatial random effect and geometry we
replicated the simulation process above 200 times to generate a total of 1400 synthetic
data-sets.
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Inferential model Additional details

I1 Constant No spatial random effects
I2 IID ϕ ∼ N (0, τ−1

ϕ In)

I3 Besag ϕ ∼ N (0, (τϕR
⋆)−) following additional recommendations of

Freni-Sterrantino et al. (2018)
I4 BYM2 ϕ = τ−1

ϕ

(√
1− π v +

√
π u⋆

)
with a Beta(0.5, 0.5) prior on π ∈

[0, 1]
I5 FCK ϕ ∼ N (0, τ−1

ϕ K) with Kij = k(ci, cj) where the length-scale l is
fixed

I6 CK As I5, with length-scale prior l ∼ Inv-Gamma(a, b)

I7 FIK ϕ ∼ N (0, τ−1
ϕ K) with Kij = 1

102

∑10
l=1

∑10
m=1 k

(
s
(i)
l , s

(j)
m

)
with hexagonal integration point spacing and fixed length-scale l

I8 IK As I7, with length-scale prior l ∼ Inv-Gamma(a, b)

Table 2: All inferential models are implemented as a part of the R package arealutils
(Howes, 2023). The AGHQ algorithm was used for approximate Bayesian inference of
all inferential models, via the aghq R package (Stringer, 2021)

5.2 Inferential models

We fit eight inferential models 2). Only the spatial random effect specification differed
between models.

Priors

We placed a weakly informative half-Gaussian prior on the standard deviation (Gelman
et al., 2006) such that σϕ ∼ N+(0, 2.5

2). The value 2.5 was chosen to avoid placing
significant prior density on the region σϕ > 5, which after a logistic transformation
facilitates variation on the probability scale very close to either zero or one. A weakly
informative N (−2, 1) prior was placed on β0, setting most of the prior probability
density for ρi within a range [0, 0.25] typical for a disease prevalence.

Kernels

We used the Matérn (Stein, 1999) kernel k : S × S → R given by

k(s, s′) =
1

2ν−1Γ(ν)

(√
2ν|s− s′|

l

)ν

Bν

(√
2ν|s− s′|

l

)
, (5.2)

where Bν is the modified Bessel function of the second kind, |s − s′| is the Euclidean
distance between s and s′, ν is the smoothness hyperparameter and l is the length-scale
hyperparameter on the latitude-longitude scale. We fixed the smoothness parameter,
which is otherwise typically unidentifiable from data, to be 3/2, matching that used in
simulation model S3, and convenient in that it simplifies Equation 5.2 to be

k(s, s′) =
(
1 +

√
3|s− s′|/l

)
exp

(
−
√
3|s− s′|/l

)
. (5.3)
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In models I5 and I7 we fixed the length-scale such that points an average distance
apart in the model have 1% correlation a priori, independent of the data (Best et al.,
1999). In models I6 and I8, we used a length-scale prior l ∼ Inv-Gamma(a, b), with
parameters a and b chosen for each model such that 1% of the prior mass is below 0.1
and 1% of the prior mass is above the maximum distance between points in the model
(Betancourt, 2017).

We set Li = 10 using a hexagonal spacing structure (Figure 6).4 We are limited to
this relatively small number by the computational costs of Model I8. For Model I6 the
Gram matrix is only computed once and it is feasible to use a much larger number of
nodes, but we chose not to for comparability.

5.3 Inference

We used adaptive Gauss-Hermite quadrature [AGHQ; Stringer et al. (2022)] with k =
3 quadrature points per hyperparameter dimension to perform approximate Bayesian
inference. Each model was implemented using a Template Model Builder C++ template
for the log-posterior via the TMB package (Kristensen et al., 2016) We were then able
to conduct inference using both AGHQ via the aghq package (Stringer, 2021) and the
No-U-Turn Sampling (NUTS) Hamiltonian Monte Carlo (HMC) algorithm using Stan
(Carpenter et al., 2017) via the tmbstan package (Monnahan and Kristensen, 2018).
In Appendix we demonstrate that the inference results from AGHQ are comparable to
those obtained running NUTS over a longer time. We also compare to empirical Bayes,
and where possible integrated nested Laplace approximation via R-INLA (Martins et al.,
2013).

5.4 Model assessment

We assessed each fitted inferential model according to its ability to recover the true
underlying value of the probabilities ρi at each area in the study region, as well as the
calibration of the model’s estimates.

Continuous ranked probability score

The continuous ranked probability score [CRPS; Matheson and Winkler (1976)] gen-
eralises the Brier score (Brier, 1950) to distributional forecasts. Let ρi have posterior
marginal f(ρi) = p(ρi | y) and ωi be the true value. Writing F as the cumulative distri-
bution function corresponding to f then

CRPS(f, ωi) =

∫ ∞

−∞
(F (ρi)− 1{ρi ≥ ωi})2dρi =

∫ 1

0

(F (ρi)− 1{ρi ≥ ωi})2dρi, (5.4)

4Note that sf::st sample with type = "hexagonal" does not guarantee exactly the specified num-
ber of samples are returned (Pebesma, 2018).
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where 1 denotes the indicator function and the second equality follows from 0 ≤ ρi ≤ 1.
CRPS(f, ωi) if and only if f(ρi) = δωi . The CRPS is a strictly proper scoring rule5

(Gneiting and Raftery, 2007) and can be evaluated directly using samples {ρsi}Ss=1 as

CRPS(f, ωi) ≈
1

S

S∑
s=1

|ρsi − ωi| −
1

2S2

S∑
s=1

S∑
l=1

|ρsi − ρli|. (5.5)

Posterior predictive check for coverage

For calibrated models, over repeated simulations, F (ωi) = qi ∼ U [0, 1] such that at
any given nominal coverage 1 − α, the proportion of quantile-based credible intervals
containing the true value ωi is also 1−α. We checked uniformity using probability inte-
gral transform (PIT) histograms (Dawid, 1984) and empirical cumulative distribution
function (ECDF) difference plots (Aldor-Noiman et al., 2013; Säilynoja et al., 2022).

5.5 Results

See Appendix.

5As is the logarithmic score (Good, 1952) given by LogS(f, ωi) = log f(ωi), though in line with
the findings of Krüger et al. (2020), we found it difficult to compute satisfactorily using kernel density
estimation.
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6 HIV prevalence study

We compared model performance in estimating HIV prevalence ρi ∈ [0, 1] in adults aged

15 − 49 across four countries in sub-Saharan Africa: Côte d’Ivoire (which has n = 33

districts), Malawi (n = 28), Tanzania (n = 159) and Zimbabwe (n = 60). As before,

we varied the spatial random effect specification. The R code for this study is available

from https://github.com/athowes/beyond-borders.

6.1 Household survey data

In each country we used data from the most recent publicly available Population Health

Impact Assessment (PHIA) survey. These surveys utilise a complex design, where each

individual j in area i has an unequal probability πij of being included in the sample:

a two-stage design in which enumeration areas are first drawn from a stratified sample

and then households are chosen using equal probability systematic sampling from within

each enumeration area is common. We used sampling weights wij = 1/πij to account

for the survey design by adjusting the raw data in each district, obtaining the Kish

effective sample size (Kish, 1965) m⋆
i = (

∑
k wij)

2/
∑

k w
2
ij and effective number of

cases y⋆i which may be thought of as what would have been observed had the survey

been a simple random sample.

6.2 Model structure

We make a slight alteration to the inferential models from Table 2. As the effective

number of cases y⋆i ∈ R and effective sample size m⋆
i ∈ R may not be integers, we use a

generalised binomial distribution y⋆i ∼ xBin(m⋆
i , ρi). The working likelihood under this

model for m⋆
i ≥ y⋆i is given by

p(y⋆i |m⋆
i , ρi) =

Γ(m⋆
i + 1)

Γ(y⋆i + 1)Γ(m⋆
i − y⋆i + 1)

ρ
y⋆
i

i (1− ρi)
(m⋆

i −y⋆
i ). (6.1)

6.3 Cross-validation

We assessed each model using two approaches: (1) a standard leave-one-out cross-

validation (LOO-CV), and (2) a spatial leave-one-out cross-validation (SLOO-CV).

Leave-one-out cross-validation

In the ith LOO-CV fold, the model was fit using the data y−i and assessed according

to its prediction on yi. We assessed forecasting performance using the root mean square

error (RMSE), mean absolute error (MAE), and CRPS, at the level of the data yi rather

than at the level of the prevalence ρi.

https://github.com/athowes/beyond-borders
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Areas the model is fit to

Areas left out

Areas predicted on

Figure 7: The ith fold in a SLOO-CV in which the model is fitted on the grey areas
A−(i,δi) with the blue areas Aδi held-out, to be assessed in predicting the green area Ai.

Spatial leave-one-out cross-validation

In the presence of structural dependencies, LOO-CV tends to underestimate predictive
error (Le Rest et al., 2014; Roberts et al., 2017). To counteract this effect, during fold i
we left out the block (i, δi), increasing the extent to which the training and validation
sets are conditionally independent, and predicted on yi (Figure 7).

6.4 Results

MSE MAE CRPS

CIV2017PHIA (n = 66)

Constant 22.6 (3.41) 3.54 (0.265) 1.91 (0.237)
IID 34.7 (4.93) 4.13 (0.297) 1.96 (0.223)

Besag 31.2 (4.13) 4.05 (0.283) 1.99 (0.213)
BYM2 30.9 (4.11) 4.02 (0.281) 1.96 (0.216)

MWI2016PHIA (n = 64)

Constant 1410 (578) 22.5 (3.71) 19.1 (3.57)
IID 2900 (968) 29.2 (4.26) 14.9 (2.54)

Besag 1380 (582) 18 (3.5) 9.55 (2.61)
BYM2 1280 (510) 18.1 (3.26) 9.52 (2.32)

TZA2017PHIA (n = 356)

Constant 30.8 (3.46) 3.82 (0.18) 2.51 (0.165)
IID 64.3 (5.47) 5 (0.22) 2.45 (0.152)

Besag 60.3 (9.33) 4.58 (0.258) 2.53 (0.185)
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BYM2 56.7 (5.7) 4.64 (0.223) 2.39 (0.151)

ZWE2016PHIA (n = 126)

Constant 185 (28.2) 9.99 (0.692) 6.99 (0.632)
IID 434 (86.1) 13.6 (0.9) 6.45 (0.487)

Besag 418 (163) 11.1 (1.05) 5.23 (0.493)
BYM2 391 (136) 11.2 (0.963) 5.25 (0.459)

7 Discussion

Areal kernels can be thought of as kernels on sets (Gärtner et al., 2002). Though it may
be possible to learn more sophisticated methods for combining kernels using data (Gönen
and Alpaydın, 2011), we do believe that this is feasible in the small-area estimation
setting, and instead focused on constructing areal kernels which represent our prior
beliefs about spatial processes. In more data rich settings it may be possible to learn
the nodes used within the integrated kernel (Campbell and Broderick, 2019).
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Besag, J., York, J., and Mollié, A. (1991). “Bayesian image restoration, with two ap-
plications in spatial statistics.” Annals of the Institute of Statistical Mathematics,
43(1): 1–20. 1, 2, 5, 9

Best, N., Arnold, N., Thomas, A., Waller, L., and Conlon, E. (1999). “Bayesian models
for spatially correlated disease and exposure data.” In Bayesian Statistics 6: Proceed-
ings of the Sixth Valencia International Meeting , volume 6, 131. Oxford University
Press. 16

Betancourt, M. (2017). “Robust Gaussian processes in Stan.”
URL https://betanalpha.github.io/assets/case_studies/gp_part3/part3.

html 16

Brier, G. W. (1950). “Verification of forecasts expressed in terms of probability.”
Monthly weather review , 78(1): 1–3. 16

https://github.com/rstudio/rticles
https://github.com/rstudio/rmarkdown
https://betanalpha.github.io/assets/case_studies/gp_part3/part3.html
https://betanalpha.github.io/assets/case_studies/gp_part3/part3.html


22Beyond borders: evaluating the suitability of spatial adjacency for small-area estimation

Campbell, T. and Broderick, T. (2019). “Automated scalable Bayesian inference via
Hilbert coresets.” The Journal of Machine Learning Research, 20(1): 551–588. 20

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M.,
Brubaker, M., Guo, J., Li, P., and Riddell, A. (2017). “Stan: A probabilistic pro-
gramming language.” Journal of Statistical Software, 76(1). 16

Cliff, A. D. and Ord, J. K. (1981). Spatial processes: models & applications. Taylor &
Francis. 5

Cramb, S., Duncan, E., Baade, P., and Mengersen, K. (2018). “Investigation of Bayesian
spatial models.” 1

Cressie, N. and Wikle, C. K. (2015). Statistics for spatio-temporal data. John Wiley &
Sons. 4

Cuadros, D. F., Li, J., Branscum, A. J., Akullian, A., Jia, P., Mziray, E. N., and Tanser,
F. (2017). “Mapping the spatial variability of HIV infection in Sub-Saharan Africa:
Effective information for localized HIV prevention and control.” Scientific reports,
7(1): 1–11. 2

Dawid, A. P. (1984). “Present position and potential developments: Some personal
views statistical theory the prequential approach.” Journal of the Royal Statistical
Society: Series A (General), 147(2): 278–290. 17

Dean, C., Ugarte, M., and Militino, A. (2001). “Detecting interaction between random
region and fixed age effects in disease mapping.” Biometrics, 57(1): 197–202. 3, 10

Diggle, P. J., Moraga, P., Rowlingson, B., Taylor, B. M., et al. (2013). “Spatial and
spatio-temporal log-Gaussian Cox processes: extending the geostatistical paradigm.”
Statistical Science, 28(4): 542–563. 2, 12

Duncan, E. W., White, N. M., and Mengersen, K. (2017). “Spatial smoothing in
Bayesian models: a comparison of weights matrix specifications and their impact
on inference.” International Journal of Health Geographics, 16(1): 1–16. 2, 9

Dwyer-Lindgren, L., Cork, M. A., Sligar, A., Steuben, K. M., Wilson, K. F., Provost,
N. R., Mayala, B. K., VanderHeide, J. D., Collison, M. L., Hall, J. B., et al. (2019).
“Mapping HIV prevalence in sub-Saharan Africa between 2000 and 2017.” Nature,
570(7760): 189–193. 2

Dwyer-Lindgren, L., Flaxman, A. D., Ng, M., Hansen, G. M., Murray, C. J., and Mok-
dad, A. H. (2015). “Drinking patterns in US counties from 2002 to 2012.” American
Journal of Public Health, 105(6): 1120–1127. 1

Eaton, J. W., Dwyer-Lindgren, L., Gutreuter, S., O’Driscoll, M., Stevens, O., Bajaj,
S., Ashton, R., Hill, A., Russell, E., Esra, R., Dolan, N., Anifowoshe, Y. O., Wood-
bridge, M., Fellows, I., Glaubius, R., Haeuser, E., Okonek, T., Stover, J., Thomas,
M. L., Wakefield, J., Wolock, T. M., Berry, J., Sabala, T., Heard, N., Delgado, S.,
Jahn, A., Kalua, T., Chimpandule, T., Auld, A., Kim, E., Payne, D., Johnson, L. F.,
FitzJohn, R. G., Wanyeki, I., Mahy, M. I., and Shiraishi, R. W. (2021). “Naomi:
a new modelling tool for estimating HIV epidemic indicators at the district level in



Howes et al. 23

sub-Saharan Africa.” Journal of the International AIDS Society , 24(S5): e25788.
URL https://onlinelibrary.wiley.com/doi/abs/10.1002/jia2.25788 3

FitzJohn, R., Ashton, R., Hill, A., Eden, M., Hinsley, W., Russell, E.,
and Thompson, J. (2022). orderly: Lightweight Reproducible Reporting .
https://www.vaccineimpact.org/orderly/, https://github.com/vimc/orderly. 13

Freni-Sterrantino, A., Ventrucci, M., and Rue, H. (2018). “A note on intrinsic condi-
tional autoregressive models for disconnected graphs.” Spatial and spatio-temporal
epidemiology , 26: 25–34. 15
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