Status: Very shallow exploration of suggested quick heuristic.
base <- 2
time_period <- 14
y <- base^{1:time_period}
plot(y)
log_y <- log(y)
plot(log_y)
y_prop <- y / 10^6
plot(log(y_prop))
diff(log_y)
## [1] 0.6931472 0.6931472 0.6931472 0.6931472 0.6931472 0.6931472 0.6931472 0.6931472 0.6931472 0.6931472 0.6931472 0.6931472 0.6931472
The increments at each time-step are \(\log(b)\) since \[ \log(b^t) - \log(b^{t + 1}) = t\log(b) - (t + 1)\log(b) = \log(b). \]
ts <- c(
3/308259878, 6/428248420, 1/419143935, 4/382434053, 25/409326241, 8/336993186,
6/339782463, 10/393575246, 3/404306425, 2/331453869, 8/443570791, 2/358994390,
6/545294572, 15/352576173, 6/298166012, 19/493418258, 18/233816053
)
plot(ts)
plot(log(ts))
log_diff <- diff(log(ts))
log_diff
## [1] 0.3643869 -1.7702704 1.4779525 1.7646252 -0.9449845 -0.2959250 0.3638589 -1.2308736 -0.2067807 1.0949256 -1.1747437 0.6805929 1.3523502 -0.7486745
## [15] 0.6489727 0.6927553
mean(log_diff)
## [1] 0.1292605
sqrt(sum((log_diff - mean(log_diff))^2))
## [1] 4.159429