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Figure 1: Tweet from UNAIDS



Prevention packages

® Prevention options can be divided into two:
1. Core package

2. Intensified interventions
® There are not enough resources to offer the more costly intensified

interventions to all AGYW, so it's important to prioritise those at highest
risk



Stratified prevention
® The Global AIDS strategy

2021-2026 proposed stratifying 6LOBAL AIDS STRATEGY 2021026
HIV prevention for AGYW based END INEQUALITIES.
upon END AIDS.

1. Population-level HIV incidence
2. Individual-level sexual risk behaviour

® Takes into account the two most
proximal drivers of sexual
transmission

Figure 2: Global AIDS strategy



Scope for our work

Goals
1. Enable implementation of prevention stratified by incidence and behaviour

2. Assess the benefits of such approaches: is it worth it?

Approach
1. Estimate the proportion of AGYW in four behavioural risk groups at a
district level (in 13 countries identified as priority by The Global Fund)
2. Analyze the new infections which could be reached by different stratified

prevention strategies



Data

® \We used sexual behaviour data from AIS, BAIS, DHS and PHIA household

surveys to place respondents into K = 4 risk groups:
1. k =1 Not sexually active
2. k = 2 One cohabiting sexual partner
3. k = 3 Non-regular sexual partner(s)
4. k =4 Female sex workers
® District-level HIV incidence, prevalence, population size estimates from the
Naomi model (Eaton et al. 2021)
® Combines survey and programmatic data to estimate indicators in the general
population
e Risk ratios from ALPHA network analysis (Slaymaker et al. 2020) and
UNAIDS analysis led by Keith Sabin
® 10 longitudinal studies: https://alpha.lshtm.ac.uk/


https://alpha.lshtm.ac.uk/
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Sample size
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Two-stage model for risk group proportions

® Only some of the surveys included a transactional sex question, required to
differentiate between the k = 3 and k = 4 risk groups
® Qur approach was to fit a two-stage model
1. Spatio-temporal multinomial logistic regression model for the proportion of AGYW in
the k = 1,2,3" risk groups, using all 47 surveys
2. Spatial logistic regression model for the proportion of those in the k = 3t = {3,4}
risk groups who are in the k = 4 risk group, using only the 13 surveys with a specific
transactional sex question



Notation

k € {1,...,4}: risk groups

ie{l,...,n}: districts

c[i] € {Botswana, ..., Zimbabwe}: country containing district i

t € {1999, ...,2018}: years

a € {15-19,20-24,25-29}: age groups

Via = (Viia1, Yisass Yiiaz, Yisaa): survey weighted multinomial observations

m’,,: survey weighted multinomial sample size
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Multinomial logistic regression model

Would like to use integrated nested Laplace approximations for fast,
accurate inference, but R-INLA is not compatible with multinomial
likelihoods because they depend on multiple elements of the latent field
Instead, use that multinomial logistic regression models can be recast as a
Poisson log-linear models using the Poisson trick

This works because conditional on their sum, Poisson counts are jointly
multinomially distributed

If you include observation-specific random effects 6;:; ~ N(0, 1000%) in the
linear predictor 7jtak = Ojta + - - - then the sample sizes mj,, can be exactly
recovered, ensuring the models are actually the same
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Multinomial logistic regression model

e Consider models of the form

Virai ~ XPoisson(\jak)
log(Aitak) = Oita + Bi + Cefijk + Qaclijk + ik + Vek + ik

® The terms are
® 0;,: observation (IID)
® [i: category (IID)
® (. country-category (IID x 1ID)
® (v, age-country-category (11D x IID x IID)
® ¢ space-category ({IID, Besag} x IID)
® ~.: year-category ({lID, AR1} x IID)
® 0.k space-year-category (Implemented but crashing on cluster at the moment. . .)
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Multinomial logistic regression model

Independent penalised complexity (Simpson et al. 2017) priors on all

standard deviation parameters with ¢ = 0 and P(¢ > 2.5 = 0.01)
® Sidenote, I'm interested as to if joint priors might be more suitable

Possible (but tricky) to define all these interactions in R-INLA by
combination of the group and replicate options

Used sum-to-zero constraints to make posterior inferences interpretable
® Because we're interested in the contribution of each random effect to total variance

Model comparison via CPO statistic
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Logistic regression model
e Consider models of the form

yiaa ~ Binomial (yii3 + Yia, Gia)
Qia = |Ogit_1 (nia) )
Nia = Bo + Cc[i] + Qacli) + oi + BcfswaSWc[i]-

® The terms are
® 3y intercept
® (i country effects (IID)
® «, age-country effects (IID)
® ¢, spatial effects (11D, Besag)
® Clients of FSW covariates (cfswever, cfswrecent) (Hodgins et al. 2022)
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Combination and FSW adjustment

® Take 1000 samples from each model, then manipulate suitably to generate
estimates for all four risk groups

® \We adjusted the samples from the k = 4 risk group to match age-country
FSW estimates, reallocating into non-regular partner(s)

® Obtained these by disaggregating Stevens et al. (2022) by age using estimates of
sexually active population from Nguyen and Eaton (2022)

—> Estimates of risk group proportions p;.x by district, year
and age group
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Figure 3: Results of FSW age disaggregation.
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ECDF difference
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Figure 4: PIT histograms and ECDF difference plots.



Figure 5: We found a geographic discontinuity in behaviour between Southern and Eastern

Africa.
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Regions of sub—Saharan Africa @ Central @ Eastern @ Southern

One cohabiting partner

Non-regular or multiple partner(s)
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Figure 6: Viewing the discontinuity another way.
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Figure 7: Proportions of variance explained.
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Benefits of our modelled risk group estimates

® |ntegration of all relevant surveys
® Two-stage approach allowed estimating FSW proportion even for surveys without a
specific transactional sex question
® Alleivating small-sample sizes by borrowing information
® We borrowed information across space, between countries and over surveys so that
our estimates more plausibly reflect spatial heterogeneity
® Estimates where there isn't direct data
® Although some people think of this as “making up data"”, the data almost never
“speak for themselves” (everything is a model)
® Uncertainty should be higher in regions with infilling: important to transparently
communicate this
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Figure 8: Illustration of the problem with direct survey estimates.
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HIV prevalence and incidence by risk group

® \We used our risk group proportion estimates together with incidence
relative risk ratios and prevalence ratios to disaggregate general population
HIV estimates in the most recent year

® Disaggregated number of new infections on a linear scale, and people living
with HIV (PLHIV) on a logit scale

® Using a linear scale for PLHIV resulted in prevalences outside [0, 1]

— Estimates of HIV incidence Ak, number of new HIV

infections /¢, HIV prevalence p;;x and PLHIV H;,, by district,
age group and risk group
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Prioritisation with risk group information

® Suppose we have all of the information (district, age, and risk group)
® Which are the strata with highest incidence?

area_id age_group category population incidence
ZMB_2_16 Y015_019 sexpaidl2m 119.03 0.19
ZAF_2 MAN Y015_019 sexpaidl2m 152.77 0.17
ZAF_2_DC29 Y015_019 sexpaidl2m 150.13 0.17
ZAF_2_DC27 Y015_019 sexpaidl2m 158.38 0.17
SWZ_1_3 Y015_019 sexpaidl2m 262.68 0.16
TZA_4_161rz Y015_019 sexpaidl2m 4427 0.16
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Prioritisation without risk group information

e What about if we lost the risk group information? Now what are the strata
with the highest incidence?

area_id age_group population incidence
SWZ_1_2 Y025_029 8395.92 0.03
MOZ_3_0820 Y020_024 6517.29 0.03
SWZ_1_2 Y020_024 9915.55 0.03
MOZ_3_0803 Y020_024 4278.59 0.03
MOZ_3_0816 Y020_024  11857.78 0.03

SWZ_1_3 Y025_029  17643.13 0.03
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Figure 9: New infections reached prioritising according to different stratifications.
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Limitations

Simplistic infections reached analysis

® No accounting for difficulty in reaching each strata

® Variable intervention effectiveness

® Change in strata membership

Under-reporting of high risk sexual behaviours

® Variation in under-reporting (likely by age, foremost, and location, less so)
particularly concerning

Risk groups definition justification not clear

® Didn't consider other important characteristics that may determine risk e.g. condom
usage

Only focused on AGYW 15-29

® Could be extended to adults of both sexes aged 15-49
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Takeaways

® Risk group estimates can help implement the Global AIDS Strategy; tool
and user guide currently being rolled out!

® |mportance of reaching FSW

® Countries have different epidemic profiles
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Thanks for listening!

® Joint work with members of the HIV inference group (hiv-inference.org)
particularly Katie Risher and Jeff Eaton

® The code for this project is at github.com/athowes/multi-agyw

® You can find me online at athowes.github.io
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