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Background

• Want to estimate the proportion pk of AGYW in K = 4 risk categories
• k = 1: Not sexually active nosex12m
• k = 2: Cohabiting, single partner sexcohab
• k = 3: Non-regular partner(s) sexnonreg
• k = 4: Key population, female sex worker sexpaid12m

• Used as a step towards estimating total incidence by group
• By district, age, sex, time

• Different policy responses depending on where new infections are

2



Goal

• Estimate proportions indexed by
• District i = 1, . . . , n

• 13 AGYW Global Fund priority countries (but fitting individually): Botswana, Cameroon,
Eswatini, Kenya, Lesotho, Malawi, Mozambique, Namibia, South Africa, Tanzania, Uganda,
Zambia and Zimbabwe

• Survey t = 1, . . . , T
• The available DHSs

• Age a ∈ {15–19, 20–24, 25–29}
• Category k

• e.g. in Lilongwe, in 2015, how many AGYW aged 20-24 are cohabiting with
a single partner?
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Why not just use the raw data

1. Usual high variance from low counts problem, improved by spatio-temporal
smoothing

2. The raw proportions don’t add up to one
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Multinomial likelihood

• We have proportions p1, . . . , p4 which are all ∈ [0, 1] and ∑k pk = 1
• =⇒ suggests using a multinomial likelihood

yita ∼ Multinomial(mita; pita1, . . . , pitaK )

p(yita | mita, pita1, . . . , pita4) = mita!
yita1! × · · · × yita4!p

yita1
ita1 × · · · pyita4

ita4
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Multivariate model

• Requires a multivariate model in that each observation depends on K
probabilities
• Really K − 1 numbers, since they are constrained to sum to one

• Usually this is done by modelling the “contrasts” between categories
• How much more likely to be in this category (or group of categories) than that

category (or group of categories)
• Different ways to do this

• These types of models are popular in economics to model choice
• Treat the latent field like utility

• Some keywords: discrete choice model, multinomial logit model
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Baseline category

• Pick one of the k ∈ {1, . . . , K} as your baseline category, say k = 2
• Define log-odds for being in category k ̸= 2 versus k = 2

log
(

pitak
pita2

)

• Three of these: {2} versus {1}, {2} versus {3} and {2} versus {4}
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Nested

• Attractive when it is appropriate to model individuals as making choices
sequentially

• {1} versus {2, 3, 4}, {2} versus {3, 4} and {3} versus {4}
• Choosing 1. whether or not to have sex, 2. conditional on having sex,

whether to have one cohabiting partner or irregular partners seems
reasonable

• Choosing 3. whether or not to be a FSW based upon choosing to have
irregular partners is less reasonable
• i.e. not like you first choose to have many partners then choose to be FSW, more like

choose to be FSW based on economic factors say
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Workaround requried

• Want to fit this model quickly and easily using R-INLA
• Sadly R-INLA doesn’t work for likelihoods which depend upon multiple

elements of the latent field (like this multinomial model)
• There is a workaround, called the Poisson trick

• A multinomial likelihood can be rewritten as a Poisson likelihood (with some
additional nuisance parameters)

• So this respecifies the model in terms of a Poisson likelihood for each category of the
observation
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Sidenote: ordinal

• πk = ∑
l≤k pl be the cumulative probability of category k where

π1 ≤ π2 ≤ · · · ≤ πK .
• Ordinal logistic regression is based upon K − 1 cumulative logits

logit(πk) = ηk where the linear predictors are ordered
• One way to do this is to assume ηk only differ in their intercept (also called

cut-point)
• I wonder if you can fit this with a single linear predictor and a category

random effect?
• Possibly wouldn’t need Poisson trick
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Poisson trick

• Based on the following fact
• Let yk ∼ Pois(λk), k = 1, . . . , K then y | n ∼ Multinomial(y; n, p1, . . . , pK )

• m =
∑

k yk
• pj = λj/

∑K
k=1 λk

• In words, given their sum, Poisson counts are jointly multinomially
distributed (McCullagh and Nelder 1989)
• In some some way you can obtain the multinomial likelihood (what we want) from

Poisson likelihoods (what we have to work with)
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Poisson trick

• In the multinomial likelihood, the sample size is treated as fixed
• Instead treat m = ∑

k yk as random. Let Λ = ∑K
k=1 λk and suppose that

m ∼ Poisson(δΛ) (Lee, Green, and Ryan 2017)

P(y, m) = P(m)P(y | m) = exp(−δΛ)(δΛ)m

m! × m!∏
k yk !

∏
k

(
λk
Λ

)yk

=
∏
k

(
exp(−δλk) (δλk)yk

yk !

)
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Poisson trick

• To find the marginal P(y) sum over the possible values of m (0 to ∞)

P(y) =
∏
k

(
exp(−δλk) (δλk)yk

yk !

)

• =⇒ yk ∼ Poisson(δλk) independently
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Poisson trick

• “The Poisson surrogate model eliminates m from the denominator of the
multinomial probabilities. This makes sense intuitively, as we do not expect
the multinomial sums to provide any useful information in estimating the
fixed effects.” (Lee, Green, and Ryan 2017)

• Example of a broader class of Poisson transformations where the theme is
to consider the normalisation constant as another parameter (Barthelmé
and Chopin 2015)

• I guess that this must mean the normalisation constant is “estimated”
exactly always
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Poisson log-linear model

• yitak ∼ Poisson(λitak)
• log(λitak) = ηitak the linear predictor for district i , survey t, age-group a

and category k
• Including observation-specific random effects θita ∼ N (0, τ−1

θ ) in the model
ηitak = θita + · · · assures exact reproduction of the multinomial
denominators
• By “observation” I mean observation of the multinomial e.g. a vector c(2, 5, 3, 0)
• These variables correspond to log(δ) from before. So we’re just having a free

parameter which can
• Then you put whatever mixed model things you’d like in
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No intercept
• Don’t include an intercept, i.e. -1 in the formula
• This is because we are interested in recovering probabilities from the model

pj = λj∑K
k=1 λk

= exp ηj∑K
k=1 exp ηj

• So adding a constant β0 on to each of the ηj does nothing (so I’d hope
that if you did include a constant it would turn out to be zero if you fitted
the model)

exp (ηj + β0)∑K
k=1 exp (ηj + β0)

= exp ηj∑K
k=1 exp ηj

• Note that this exp(x) / sum(exp(x)) function is called “softmax”
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Nine models
• Always use age-category random effects αak ∼ N (0, τ−1

α )
• I haven’t been including category random effects, but based on my research for this

presentation I think I should have been. I think because I have the age-category it’s
already mopping up the intercept

• Three choices for spatial-category random effects ϕik :
• None
• IID ϕik ∼ N (0, τ−1

ϕ )
• BYM2

• Three choices of time-category random effects γtk
• None
• IID γtk ∼ N (0, τ−1

γ )
• AR1

• Some amount of nuance / choice to defining the structured {spatial
(BYM2), temporal (AR1)}-category interactions
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First way
• Let area_idx be an indicator the the area
• area_idx.k = ifelse(category == k, area_idx, NA) is that same

indicator but just for the category k
• Then (say you want spatial) you can use f(area_idx.k, model = "bym2",

graph = adjM) in your R-INLA formula
• This results in a set of K independent spatial random effects

ϕik =
√

τ−1
ϕk

(√
πk · uik +

√
1 − πk · vik

)
, k = 1, . . . , K

• Key point is that you have different hyperparameters for each category
{τϕk , πk}
• Do we want this?

• Also have to define area_idx.k and write f(...) more times (annoying)
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Second way

• Alternative (in R-INLA) is to use the group option which lets you define
“Gaussian Kronecker product Markov random fields”
• Sounds fancy, isn’t that fancy

• “Precison matrix” (probably it doesn’t have full rank so it’s not really a
precision) defined by Q = Q1 ⊗ Q2

• In R-INLA it’s more like the “structure matrix” is defined by R = R1 ⊗ R2
• So that the precision is Q = τR
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Example of group option

• Let’s say we’re trying to define the time-category interaction random
effects, using an AR1 on time

• If there are three surveys, and we suppose ρ = 1 then the precision matrix
for this AR1 is  1 −1 0

−1 2 −1
0 −1 1


• To get the structure matrix R1 we’d divide by exp(mean(log(diag(Q))))
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Example of group option
• For the “category random effects” grouping variable we want IID structure,

so that the precision (and structure matrix R2) are1 0 0
0 1 0
0 0 1


• The R-INLA call for this is f(sur_idx, model = "ar1", group =

cat_idx, control.group = list(model = "iid"), ...)
• The new structure matrix looks like

R =

R1 0 0
0 R1 0
0 0 R1


• Important difference: just have one set of hyperparameters {τγ, ρ}

• i.e. there is pooling across categories doing it this way 21



Survey weights

• Use survey weights to calculate effective observation x_eff
• May not be integers i.e. c(1.87, 5.32, 2.20, 0.15)
• Deal with this by using xPoisson (generalisation of the Poisson to

non-integer data) rather than Poisson
• Might be equivalent to weighted log-likelihood approach
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Data issues for sexpaid12m category

• Two different questions asked in the DHS, and answered very differently
• Before 2015, asked about most recent three partners. One of the categories

for these is paid
• Very rare to list one of these as paid, using this question often think there are

essentially no FSW
• After 2015, asked if have given or received gifts or money in exchange for

sex
• Better answered but still has issues

• Missing some FSW from survey sampling frame
• Not all “gifts of money in exchange for sex” is sex work
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Current approach

• Can’t fit a (meaningful) spatio-temporal model when the question asked /
response is so different

• Have been fitting single-survey spatial models to the most recent DHS
• Otherwise have created a three-category model, moving all sexpaid12m

into sexnonreg to create a new sexnonregplus category
• Haven’t checked that some of the sexpaid12m shouldn’t go into sexcohab rather

than sexnonreg yet (sorry Katie!)
• Challenge is what to do about the sexpaid12m category
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What to do about the sexpaid12m category

1. Ignore it
2. Try to use other data sources to help
• Previous estimates from workbook are based upon national estimates of

FSW population size (perhaps the UNAIDS Key Population Atlas)
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Johnston et al. (2021, preprint)

Deriving and interpreting population size estimates for adolescent and
young key populations at higher risk of HIV transmission: men who
have sex with men, female sex workers and transgender persons

• Disaggregates the UNAIDS published population size estimates by age
(nice, but not by district, which we’d also want) using proportion of
sexually active adults

• Kinh is a coauthor and warns that
• The estimates should (often) be seen as expert opinion rather than based on data
• Several countries had no data
• Rounding up when the number is too small
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Laga et al. (2021, preprint)

Mapping female sex worker prevalence (aged 15-49 years) in
sub-Saharan Africa

• Collates available FSW population size estimates
• Small-area model with covariates used to extrapolate to district level
• Has code available
• Probably the best single source to rely on, done a lot of the work already
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Hodgkins et al. (2021, preprint)
HIV prevalence, population sizes, and HIV prevention among men who
paid for sex in sub-Saharan Africa: a meta-analysis of 82
population-based surveys (2000-2020)

• Proportion of men who pay for sex (CFSW) estimated from survey data
• Could be linked to proportion FSW by some model e.g.

pCFSW = B × pFSW

with a strongly informative prior B ∼ p(B) (around 10 say)
• Don’t know if this is a good model, anyone have any ideas?
• Extract estimates from Hodgkins and plot versus estimates of FSW to see if it looks

linear
• Of course the ratio is going to vary, but perhaps it’s quite stable?

• Fit a model on the good DHS sexpaid12m question, then use it where
there isn’t the question
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log(pCFSW) − log(pFSW) = log(B) (1)

log
(

pCFSW
pFSW

)
= log(B) (2)
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