Spatio-temporal estimates of HIV risk group proportions for adolescent girls and young women across 13 priority countries in sub-Saharan Africa

Centre for Global Health Research, UToronto

Adam Howes

Imperial College London

September 2022

Background

- In sub-Saharan Africa, adolescent girls and young women (AGYW) aged
 15-29 are disproportionately at risk of HIV infection
- This disparity is because of:
 - 1. Younger age at first sex
 - 2. Age patterns of sexual mixing
 - 3. Structural vulnerabilities and power imbalances
 - 4. Increased susceptibility to HIV infection

Prevention packages

- Prevention options can be divided into two:
 - 1. Core package
 - 2. Intensified interventions
- There are not enough resources to offer the more costly intensified interventions to all AGYW, so it's important to prioritise those at highest risk

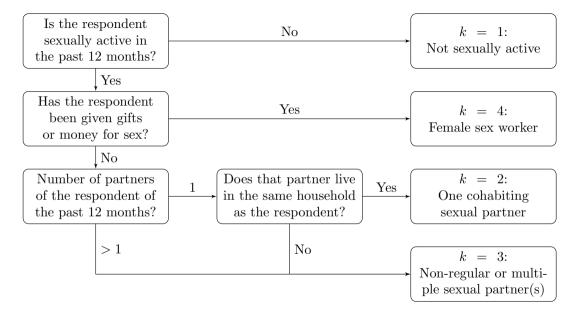
Stratified prevention

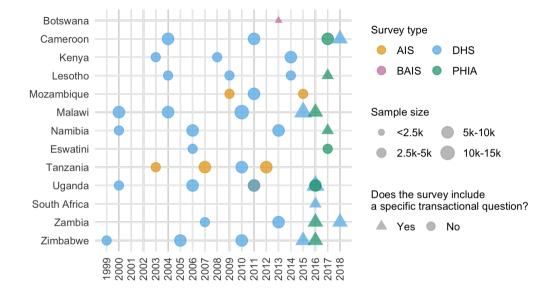
- The Global AIDS strategy 2021-2026 proposed stratifying HIV prevention for AGYW based upon
 - 1. Population-level HIV incidence
 - 2. Individual-level sexual risk behaviour
- Takes into account the two most proximal drivers of sexual transmission

Figure 1: Global AIDS strategy

Scope for our work

Goals


- 1. Enable implementation of prevention stratified by incidence and behaviour
- 2. Assess the benefits of such approaches: is it worth it?


Approach

- 1. Estimate the proportion of AGYW in four behavioural risk groups at a district level (in 13 countries identified as priority by The Global Fund)
- 2. Analyze the new infections which could be reached by different stratified prevention strategies

Data

- We used sexual behaviour data from AIS, BAIS, DHS and PHIA household surveys to place respondents into K = 4 risk groups:
 - 1. k = 1 Not sexually active
 - 2. k = 2 One cohabiting sexual partner
 - 3. k = 3 Non-regular sexual partner(s)
 - 4. k = 4 Female sex workers
- District-level HIV incidence, prevalence, population size estimates from the Naomi model (Eaton et al. 2021)
- Risk ratios from ALPHA network analysis (Slaymaker et al. 2020) and UNAIDS analysis led by Keith Sabin

Two-stage model for risk group proportions

- Only some of the surveys included a transactional sex question, required to differentiate between the k=3 and k=4 risk groups
- Our approach was to fit a two-stage model
 - 1. Spatio-temporal multinomial logistic regression model for the proportion of AGYW in the $k = 1, 2, 3^+$ risk groups, using all 47 surveys
 - 2. Spatial logistic regression model for the proportion of those in the $k=3^+=\{3,4\}$ risk groups who are in the k=4 risk group, using only the 13 surveys with a specific transactional sex question

Notation

- $k \in \{1, \ldots, 4\}$: risk groups
- $i \in \{1, \ldots, n\}$: districts
- $c[i] \in \{\text{Botswana}, \dots, \text{Zimbabwe}\}$: country containing district i
- $t \in \{1999, \dots, 2018\}$: years
- $a \in \{15-19, 20-24, 25-29\}$: age groups
- $y_{ita}^{\star} = (y_{ita1}^{\star}, y_{ita2}^{\star}, y_{ita3}^{\star}, y_{ita4}^{\star})$: survey weighted multinomial observations
- m_{ita}^{\star} : survey weighted multinomial sample size

Multinomial logistic regression model

- Would like to use integrated nested Laplace approximations for fast, accurate inference, but R-INLA is not compatible with multinomial likelihoods because they depend on multiple elements of the latent field
- Instead, use that multinomial logistic regression models can be recast as a Poisson log-linear models using the Poisson trick
- Include observation-specific random effects $\theta_{ita} \sim \mathcal{N}(0, 1000^2)$ in any linear predictor $\eta_{itak} = \theta_{ita} + \cdots$ to ensure exact reproduction of m_{ita}^{\star}

Multinomial logistic regression model

Consider models of the form

$$\begin{aligned} \mathbf{y}_{itak}^{\star} &\sim \mathsf{xPoisson}(\lambda_{itak}) \\ \log(\lambda_{itak}) &= \theta_{ita} + \beta_k + \zeta_{c[i]k} + \alpha_{ac[i]k} + \phi_{ik} + \gamma_{tk} + \delta_{itk}. \end{aligned}$$

- The terms are
 - θ_{ita} : observation (IID)
 - β_k : category (IID)
 - ζ_{ck} : country-category (IID x IID)
 - α_{ack} : age-country-category (IID x IID x IID)
 - ϕ_{ik} : space-category ({IID, **Besag**} × IID)
 - γ_{tk} : year-category ({IID, AR1} x IID)
 - ullet $\delta_{\it itk}$: space-year-category (Implemented but crashing on cluster at the moment...)

Multinomial logistic regression model

- Independent penalised complexity (Simpson et al. 2017) priors on all standard deviation parameters with $\sigma = 0$ and $\mathbb{P}(\sigma > 2.5 = 0.01)$
 - Sidenote, I'm interested as to if joint priors might be more suitable
- Possible (but tricky) to define all these interactions in R-INLA by combination of the group and replicate options
- Used sum-to-zero constraints to make posterior inferences interpretable
 - Because we're interested in the contribution of each random effect to total variance
- Model comparison via CPO statistic

Logistic regression model

Consider models of the form

$$\begin{split} & y_{ia4}^{\star} \sim \mathsf{Binomial}\left(y_{ia3}^{\star} + y_{ia4}^{\star}, q_{ia}\right), \\ & q_{ia} = \mathsf{logit}^{-1}\left(\eta_{ia}\right), \\ & \eta_{ia} = \beta_0 + \zeta_{c[i]} + \alpha_{ac[i]} + \phi_i + \beta_{\mathsf{cfsw}}\mathsf{cfsw}_{c[i]}. \end{split}$$

- The terms are
 - β_0 : intercept
 - $\zeta_{c[i]}$: country effects (IID)
 - $\alpha_{ac[i]}$ age-country effects (IID)
 - ϕ_i : spatial effects (IID, **Besag**)
 - Clients of FSW covariates (cfswever, cfswrecent) (Hodgins et al. 2022)

Combination and FSW adjustment

- Take 1000 samples from each model, then manipulate suitably to generate estimates for all four risk groups
- We adjusted the samples from the k=4 risk group to match age-country FSW estimates, reallocating into non-regular partner(s)
 - Obtained these by disaggregating Stevens et al. (2022) by age using estimates of sexually active population from Nguyen and Eaton (2022)

 \Longrightarrow Estimates of risk group proportions p_{itak} by district, year and age group

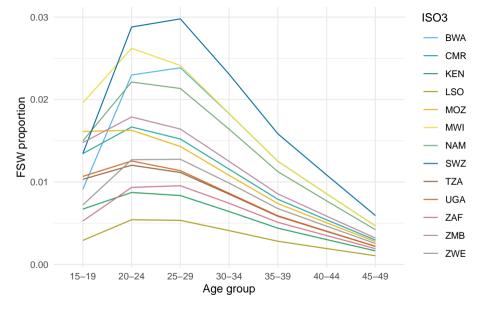


Figure 2: Results of FSW age disaggregation.

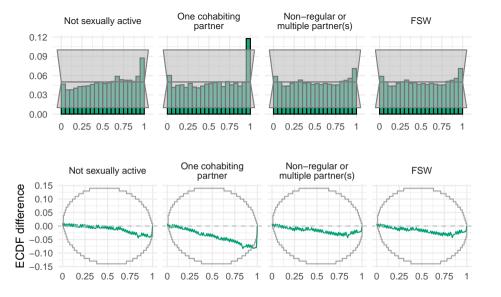


Figure 3: PIT histograms and ECDF difference plots.

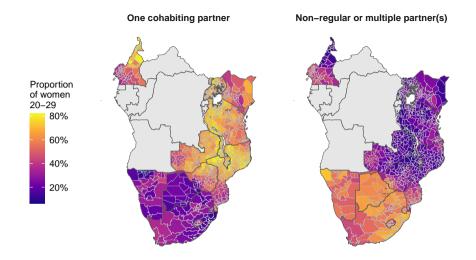
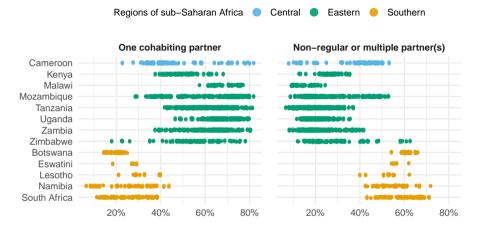



Figure 4: We found a geographic discontinuity in behaviour between Southern and Eastern Africa.

Not sexually active (not shown) + Cohabiting partner + Nonregular partner(s) + FSW (not shown) = 100%

Figure 5: Viewing the discontinuity another way.

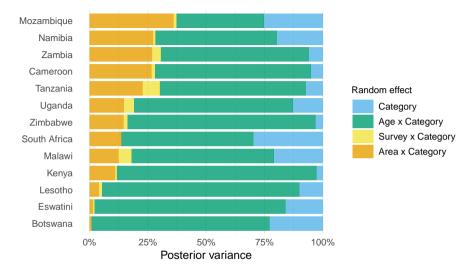


Figure 6: Proportions of variance explained.

Benefits of our modelled risk group estimates

- Integration of all relevant surveys
 - Two-stage approach allowed estimating FSW proportion even for surveys without a specific transactional sex question
- Alleivating small-sample sizes by borrowing information
 - We borrowed information across space, between countries and over surveys so that our estimates more plausibly reflect spatial heterogeneity
- Estimates where there isn't direct data
 - Although some people think of this as "making up data", the data almost never "speak for themselves" (everything is a model)
 - Uncertainty should be higher in regions with infilling: important to transparently communicate this

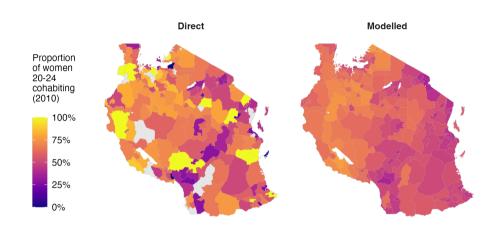


Figure 7: Illustration of the problem with direct survey estimates.

HIV prevalence and incidence by risk group

- We used our risk group proportion estimates together with incidence relative risk ratios and prevalence ratios to disaggregate general population HIV estimates in the most recent year
- Disaggregated number of new infections on a linear scale, and people living with HIV (PLHIV) on a logit scale
 - ullet Using a linear scale for PLHIV resulted in prevalences outside [0,1]

 \implies Estimates of HIV incidence λ_{iak} , number of new HIV infections I_{iak} , HIV prevalence ρ_{iak} and PLHIV H_{iak} by district, age group and risk group

Prioritisation with risk group information

- Suppose we have all of the information (district, age, and risk group)
- Which are the strata with highest incidence?

area_id	age_group	category	population	incidence
ZMB_2_16	Y015_019	sexpaid12m	119.03	0.19
ZAF_2_MAN	Y015_019	sexpaid12m	152.77	0.17
ZAF_2_DC29	Y015_019	sexpaid12m	150.13	0.17
ZAF_2_DC27	Y015_019	sexpaid12m	158.38	0.17
SWZ_1_3	Y015_019	sexpaid12m	262.68	0.16
TZA_4_161rz	Y015_019	sexpaid12m	44.27	0.16

Prioritisation without risk group information

• What about if we lost the risk group information? Now what are the strata with the highest incidence?

area_id	age_group	population	incidence
SWZ_1_2	Y025_029	8395.92	0.03
MOZ_3_0820	Y020_024	6517.29	0.03
SWZ_1_2	Y020_024	9915.55	0.03
MOZ_3_0803	Y020_024	4278.59	0.03
MOZ_3_0816	Y020_024	11857.78	0.03
SWZ_1_3	Y025_029	17643.13	0.03

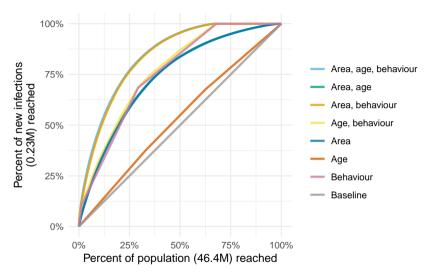


Figure 8: New infections reached prioritising according to different stratifications.

Limitations

- Simplistic infections reached analysis
 - No accounting for difficulty in reaching each strata
 - Variable intervention effectiveness
 - Change in strata membership
- Under-reporting of high risk sexual behaviours
 - Variation in under-reporting (likely by age, foremost, and location, less so) particularly concerning
- Risk groups definition justification not clear
 - Didn't consider other important characteristics that may determine risk e.g. condom usage
- Only focused on AGYW 15-29
 - Could be extended to adults of both sexes aged 15-49

Takeaways

- Risk group estimates can help implement the Global AIDS Strategy; tool and user guide currently being rolled out!
- Importance of reaching FSW
- Countries have different epidemic profiles

Thanks for listening!

- Joint work with members of the HIV inference group (hiv-inference.org)
 particularly Katie Risher and Jeff Eaton
- The code for this project is at github.com/athowes/multi-agyw
- You can find me online at athowes.github.io

Bibliography I

Eaton, Jeffrey W., Laura Dwyer-Lindgren, Steve Gutreuter, Megan O'Driscoll, Oliver Stevens, Sumali Bajaj, Rob Ashton, et al. 2021. "Naomi: a new modelling tool for estimating HIV epidemic indicators at the district level in sub-Saharan Africa." *Journal of the International AIDS Society* 24 (S5): e25788.

Hodgins, Caroline, James Stannah, Salome Kuchukhidze, Lycias Zembe, Jeffrey W Eaton, Marie-Claude Boily, and Mathieu Maheu-Giroux. 2022. "Population Sizes, HIV Prevalence, and HIV Prevention Among Men Who Paid for Sex in Sub-Saharan Africa (2000–2020): A Meta-Analysis of 87 Population-Based Surveys." *PLoS Medicine* 19 (1): e1003861.

Bibliography II

- Nguyen, Van Kính, and Jeffrey W. Eaton. 2022. "Trends and country-level variation in age at first sex in sub-Saharan Africa among birth cohorts entering adulthood between 1985 and 2020." *BMC Public Health* 22 (1): 1120. https://doi.org/10.1186/s12889-022-13451-y.
- Simpson, Daniel, Håvard Rue, Andrea Riebler, Thiago G Martins, and Sigrunn H Sørbye. 2017. "Penalising Model Component Complexity: A Principled, Practical Approach to Constructing Priors." *Statistical Science* 32 (1): 1–28.
- Slaymaker, Emma, Kathryn A. Risher, Ramadhani Abdul, Milly Marston, Keith Tomlin, Robert Newton, Anthony Ndyanabo, et al. 2020. "Risk factors for new HIV infections in the general population in sub-Saharan Africa."

Bibliography III

Stevens, Oliver, Keith Sabin, Sonia Arias Garcia, Kalai Willis, Abu Abdul-Quader, Anne McIntyre, Frances Cowan, et al. 2022. "Estimating key population size, HIV prevalence, and ART coverage for sub-Saharan Africa at the national level."