Successful priorisation of HIV prevention using risk behaviour would greatly increase expected new infections preemptively reached.

Spatio-temporal estimates of HIV risk group proportions for adolescent girls and young women across 13 priority countries in sub-Saharan Africa

Adam Howes^{1, 2}

y @adamhowes ► ath19@ic.ac.uk

Kathryn A. Risher^{2, 3} Van Kinh Nguyen² Oliver Stevens² Katherine M. Jia⁴ Tim M. Wolock^{1, 2} Rachel Esra² Lycias Zembe⁵ Ian Wanyeki⁵ Mary Mahy⁵ Clemens Benedikt⁵ Seth R. Flaxman⁶ Jeffrey W. Eaton²

¹ Department of Mathematics, Imperial College London

² MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London

³ Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University

⁴ Harvard T. H. Chan School of Public Health, Harvard University

⁵ Joint United Nations Programme on HIV/AIDS, Geneva, Switzerland

⁶ Department of Computer Science, University of Oxford

Introduction

- Adolescent girls and young women (AGYW) 15-29 face disproportionately high risk of HIV infection, and are a priority population for prevention efforts
- The Global AIDS Strategy 2021-2026 recommends differentiating services for AGYW geographically based on individual risk behaviour and epidemic both indicators
- We used a spatio-temporal model to estimate the proportion of AGYW in four behavioural risk categories

Figure 1: District level estimates (in colour) and national estimates (in white) in 2018.

Not sexually active	One cohabiting partner	Non-regular or multiple partner(s)	FSW
	partiter		

- Using location, age and behavioral risk prioritisation, 50% of expected new infections can be found by reaching 10.6% of the population, compared with 19.3% of the population when behaviour is excluded
- The majority of this benefit comes from reaching FSW, who are 1.4% of the at risk population but 10.9% of all

- Providing prevention services on the basis of behavior would allow many more expected new infections to be reached, especially among FSW
- Programs should ensure that behavioural prioritisation occurs without stigmatising or blaming AGYW
- We focused on the most proximal determinants of risk, based on location and behaviour, rather than more distal determinants • Using a two-stage approach allowed us to include all surveys, even those without a specific transactional sex question • We overcome the small sample sizes created by multiple stratifications by using spatio-temporal smoothing

in 13 priority countries at a district level in the years 1999-2018

k	Risk group	Risk ratio
1	Not sexually active	0
2	One cohabiting partner	1
3	Non-regular or multiple partner(s)	1.72
4	Female sex workers (FSW)	13

Methods

- We analyzed 46 national household surveys, including AIS, BAIS, DHS and PHIA
- We took a two-stage modelling approach:
- 1. We fit a survey-weighted multinomial logistic regression to estimate the proportion of AGYW each risk group, with the non-regular or multiple partner(s) and FSW risk groups combined together, using age (IID), country (IID), spatial (ICAR) and temporal (IID) random effects
- 2. To estimate the FSW proportion we used the 13 surveys with a transactional sex question to fit a survey-weighted logistic regression using age (IID), country (IID) and spatial (ICAR) random effects, as well as covariates for the proportion of men who are clients of FSW (Hodgins et al.

Figure 2: Spatial distribution of our 2018 estimates.

Limitations

- No adjustment for under-reporting biases, which likely vary by age group
- Choosing appropriate risk group definitions that succinctly capture variation in risk consistently across contexts is challenging
- We are least confident in our FSW estimates, which face particular measurement difficulties
- We did not assess the practicalities or costs of the risk prioritisation strategies we considered

Future work

- Inclusion of more surveys e.g. VACS
- Extension to general population (adults 15-49)

Interested to read more? Manuscript and R code available are available from github.com/athowes/multi-agyw.

Funding AH was supported by the EPSRC and Bill & Melinda Gates Foundation. This research was supported by the MRC Centre for Global Infectious Disease Analysis.

2022)

- We aligned our FSW estimates to national-level estimates obtained by disaggregating Stevens et al. (2022) by age group
- We disaggregated Naomi model (Eaton et al. 2021) general population incidence and prevalence estimates by risk group using incidence risk ratios and prevalence ratios
- We estimated the new infections that could be reached prioritisting according to different strategies
- Risk group proportions varied substantially across age groups (65.9% of total variation explained), countries (20.9%), and between districts within each country (11.3%), but changed little over time (0.9%)
- Among women aged 20-29, cohabiting (63.1%) was more common in eastern Africa than non-regular or multiple partner(s) (21.4%), while in southern countries non-regular or multiple partner(s) (58.5%) were more common than cohabiting (23.4%)
- Large numbers of 15-19 in Mozambique have early sexual debut (64.2%) and close to a third (34.2%) are already cohabiting

References

Eaton, Jeffrey W., Laura Dwyer-Lindgren, Steve Gutreuter, Megan O'Driscoll, Oliver Stevens, Sumali Bajaj, Rob Ashton, et al. 2021. "Naomi: a new modelling tool for estimating HIV epidemic indicators at the district level in sub-Saharan Africa." *Journal of the International*

AIDS Society 24 (S5): e25788. Hodgins, Caroline, James Stannah, Salome Kuchukhidze, Lycias Zembe, Jeffrey W Eaton, Marie-Claude Boily, and Mathieu Maheu-Giroux. 2022. "Population Sizes, HIV Prevalence, and HIV Prevention Among Men Who Paid for Sex in Sub-Saharan Africa (2000–2020): A Meta-Analysis of 87 Population-Based Surveys." *PLoS Medicine* 19 (1): e1003861. Stevens, Oliver, Keith Sabin, Sonia Arias Garcia, Kalai Willis, Abu Abdul-Quader, Anne McIntyre, Frances Cowan, et al. 2022. "Estimating key population size, HIV prevalence, and ART coverage for sub-Saharan Africa at the national level."

