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1 Modelling of risk group proportions
1.1 Overview
Let i ∈ {1, . . . , n} denote subnational units (Table E in S2 Text) which partition the 13 studied AGYW
priority countries c[i] ∈ {1, . . . , 13}. We considered the years 1999-2018 denoted as t ∈ {1, . . . , T}, and age
groups a ∈ {15–19, 20–24, 25–29}. Let the four risk groups be k ∈ {1, 2, 3, 4} and denote being in either the
third or fourth risk group by k = 3+.

First, we used a multinomial logistic regression model to infer the proportion of AGYW in the risk groups
k ∈ {1, 2, 3+}. One way to specify this model is using a multinomial likelihood

yita = (yita1, . . . , yita3+)⊤ ∼ Multinomial(mita; pita1, . . . , pita3+), (1)

where the number of women in risk group k is yitak, the sample size is mita =
∑3+

k=1 yitak, pitak > 0 is the
probability of membership of the kth risk group with

∑3+

k=1 pitak = 1, and taking k = 1 to be the baseline
category, linear predictors may be specified for the additive log ratios log(pitak/pita1). To facilitate inference
in the R-INLA, we used an equivalent Poisson log-linear model via the multinomial-Poisson transformation
(Baker 1994). This transformation, and further details about this model, are presented in Section 1.2.

Next, we fit a logistic regression model to estimate the proportion of those in the k = 3+ risk group that
were in the k = 3 and k = 4 risk groups respectively. This model was of the form

yia4 ∼ Binomial (yia3 + yia4, qia) , (2)
qia = logit−1 (ηia) , (3)

where qia = pia4/(pia3 + pia4) = pia4/pia3+ and the linear predictor ηia is chosen suitably, described in more
detail in Section 1.3. Taking this two-step approach allowed us to include all surveys in the multinomial
regression model, but only those surveys with a specific transactional sex question in Equation 2. As all such
surveys occurred in 2013-2018, in the logistic regression model we assumed qia to be constant over time.

To facilitate uncertainty quantification, we took 1000 posterior samples, indexed by s, from each of the
multinomial {ps

itak} and logistic regression {qs
ia} models. Samples ps

ita3 and ps
ita4 were then generated by

ps
ita3 = (1 − qs

ia)pita3+s and ps
ita4 = qs

iaps
ita3+ .

As transactional sex does not directly correspond to sex work (Wamoyi et al. 2016), we adjusted our samples
so that at a national level, the population size estimates match FSW population size estimates by age. Our
methodology for producing these estimates is described in Section 2. In making this adjustment, we assumed
that subnational variation in the FSW proportions corresponds to that of the transactional sex proportions.

We calculated the mean, median, and 2.5% and 97.5% quantiles for the risk group probabilities empirically
using the adjusted samples. To produce aggregated estimates, such as the age category 15-24 or any national
estimates, we weighted the adjusted samples by population sizes Nita =

∑
k Nitak obtained from the Naomi

model (Eaton et al. 2021).

1.2 Multinomial regression model
1.2.1 The multinomial-Poisson transformation

The multinomial-Poisson transformation reframes a given multinomial logisitic regression model as an
equivalent Poisson log-linear model of the form

yitak ∼ Poisson(κitak), (4)
log(κitak) = ηitak, (5)

for certain choice of the linear predictor ηitak. The basis of the transformation is that, conditional on their
sum, Poisson counts are jointly multinomially distributed (McCullagh and Nelder 1989) as follows

yita | mita ∼ Multinomial
(

mita; κita1

κita
, . . . ,

κita3+

κita

)
, (6)
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where κita =
∑3+

k=1 κitak such that category probabilites are obtained by the softmax funciton

pitak = exp(ηitak)∑3+

k=1 exp(ηitak)
= κitak∑3+

k=1 κitak

= κitak

κita
. (7)

In the equivalent model, the sample sizes mita =
∑

k yitak are treated as random, rather than fixed as they
would be in the multinomial logistic regression model, taking a Poisson distribution

mita ∼ Poisson (κita) . (8)

In the equivalent model, the joint distribution of p(yita, mita) = p(yita | mita)p(mita) is

p(yita, mita) = exp(−κita) (κita)mita

mita! × mita!∏
k yitak!

∏
k

(
κitak

κita

)yitak

(9)

=
∏

k

(
exp(−κitak) (κitak)yitak

yitak!

)
(10)

=
∏

k

Poisson (yitak | κitak) . (11)

corresponding to the product of independent Poisson likelihoods as in Equation 4. This model, including
random sample sizes, is equivalent to the multinomial logistic regression only when these normalisation
constants are recovered exactly. To ensure that this is the case, one approach is to include observation-specific
random effects θita in the equation for the linear predictor. Multiplying each of {κitak}3+

k=1 by exp(θita) has
no effect on the category probabilities, but does provide the necessary flexibility for κita to recover mita

exactly. Although in theory an improper prior θita ∝ 1 should be used, in practise, by keeping ηita otherwise
small using appropriate constraints, so that arbitrarily large values of θita are not required, it is sufficient
(and practically preferable for inference) to instead use a vague prior.

1.2.2 Model specifications

Model ID Category (βk) Country (ζck) Age (αack) Spatial (ϕik) Temporal (γtk) Spatio-temporal (δitk)

M1 IID IID IID IID IID Not included
M2 IID IID IID Besag IID Not included
M3 IID IID IID IID AR1 Not included
M4 IID IID IID Besag AR1 Not included

Table A: The multinomial regression models that we considered. Observation random effects θita, included in
all models, are omitted from this table.

We considered four models (Table A) for ηita of the form

ηita = θita + βk + ζc[i]k + αac[i]k + ϕik + γtk.

Observation random effects θita ∼ N (0, 10002) were included in all models we considered. To capture
country-specific proportion estimates for each category, we included category random effects βk ∼ N (0, τ−1

β )
and country-category random effects ζck ∼ N (0, τ−1

ζ ). Heterogeneity in risk group proportions by age was
allowed by including age-country-category random effects αack ∼ N (0, τ−1

α ). We considered two specifications,
independent and identically distributed (IID) and Besag (Besag, York, and Mollié 1991), for the space-category
ϕik random effects (Section 1.2.3) and two specifications, IID and first order autoregressive (AR1), for the
year-category γtk random effects (Section 1.2.4). All random effect precision parameters τ ∈ {τβ , τζ , τα, τϕ, τγ}
were given independent penalised complexity (PC) priors (Simpson et al. 2017) with base model σ = 0 given
by p(τ) = 0.5ντ−3/2 exp

(
−ντ−1/2) where ν = − ln(0.01)/2.5 such that P(σ > 2.5) = 0.01.
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1.2.3 Spatial random effects

The specifications we considered were IID

ϕik ∼ N (0, τ−1
ϕ ),

and Besag grouped by category

ϕ = (ϕ11, . . . , ϕn1, . . . , ϕ13+ , . . . ϕn3+)⊤ ∼ N (0, (τϕR⋆
ϕ)−),

where the scaled structure matrix R⋆
ϕ = R⋆

b ⊗ I is given by the Kronecker product of the scaled Besag
structure matrix R⋆

b and the identity matrix I, and − denotes the generalised matrix inverse. Scaling of
the structure matrix to have generalised variance one ensures interpretable priors may be placed on the
precision parameter (Sørbye and Rue 2014). We followed the further recommendations of Freni-Sterrantino,
Ventrucci, and Rue (2018) with regard to disconnected adjacency graphs, singletons and constraints. The
Besag structure matrix Rb is obtained by the precision matrix of the random effects b = (b1, . . . , bn)⊤ with
full conditionals

bi | b−i ∼ N
(∑

j:j∼i bj

nδi
,

1
nδi

)
, (12)

where j ∼ i if the districts Ai and Aj are adjacent, and nδi is the number of districts adjacent to Ai.

In preliminary testing, we excluded spatial random effects from the model, but found that this negatively
effected performance. We also tested using the BYM2 model (Simpson et al. 2017) in place of the Besag, but
found that the proportion parameter posteriors tended to be highly peaked at the value one. For simplicity
and to avoid numerical issues, by using Besag random effects we decided to fix this proportion to one.

1.2.4 Temporal random effects

The specifications we considered were IID

ϕtk ∼ N (0, τ−1
ϕ ),

and AR1 grouped by category

γ = (γ11, . . . , γ13+ , . . . , γT 1, . . . , γT 3+)⊤ ∼ N (0, (τϕR⋆
γ)−),

where the scaled structure matrix R⋆
γ = R⋆

r ⊗ I is given by the Kronecker product of a scaled AR1 structure
matrix R⋆

r and the identity matrix I. The AR1 structure matrix Rr is obtained by precision matrix of the
random effects r = (r1, . . . , rT )⊤ specified by

r1 ∼
(

0,
1

1 − ρ2

)
, (13)

rt = ρrt−1 + ϵt, t = 2, . . . , T, (14)

where ϵt ∼ N (0, 1) and |ρ| < 1. For the lag-one correlation parameter ρ, we used the PC prior, as derived by
Sørbye and Rue (2017), with base model ρ = 1 and condition P(ρ > 0 = 0.75). We chose the base model
ρ = 1 corresponding to no change in behaviour over time, rather than the alternative ρ = 0 corresponding to
no correlation in behaviour over time, as we judged the former to be more plausible a priori.

1.2.5 Constraints

To ensure interpretable posterior inferences of random effect contribution, we applied sum-to-zero constraints
such that none of the category interaction random effects altered overall category probabilities. For the
space-year-category random effects, we applied analogous sum-to-zero constraints to maintain roles of the
space-category and year-category random effects. Together, these were:

1. Category
∑

k βk = 0
2. Country

∑
c ζck = 0, ∀ k

3. Age-country
∑

a αack = 0, ∀ c, k,
4. Spatial

∑
i ϕik = 0, ∀ k

5. Temporal
∑

t γtk = 0, ∀ k
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1.2.6 Survey weighted likelihood

We included surveys which use a complex design, in which each individual has an unequal probability of
being included in the sample. For example the DHS often employs a two-stage cluster design, first taking an
urban rural stratified sample of ennumeration areas, before selecting households from each ennumeration area
using systematic sampling (DHS 2012).

To account for this aspect of survey design, we use a weighted pseudo-likelihood where the observed counts
y are replaced by effective counts y⋆ calculated using the survey weights wj of all individuals j in the
corresponding strata. We multiplied direct estimates produced using the survey package (Lumley 2004) by
the Kish effective sample size (Kish 1965)

m⋆ =

(∑
j wj

)2

∑
j wj

2 (15)

to obtain y⋆. These counts may not be integers, and as such the Poisson likelihood we used in Equation 4 is
not appropriate. Instead, we used a generalised Poisson pseudo-likelihood y⋆ ∼ xPoisson(κ), given by

p(y⋆) = κy⋆

⌊y⋆!⌋ exp (−κ) , (16)

as implemented by family = "xPoisson" in R-INLA, which accepts non-integer input.

1.2.7 Model selection

We performed model selection on the basis of the conditional predictive ordinate (CPO) criterion (Pettit
1990), selecting model M2. This model included Besag spatial random effects and IID temporal random
effects. For reference, we also computed the deviance information criterion (DIC) (Spiegelhalter et al. 2002)
and widely applicable information criterion (WAIC) (Watanabe 2013) (Table B and Fig A).

M1 M2 M3 M4
DIC 100780 (300) 101588 (317) 100781 (300) 101589 (317)
WAIC 103763 (358) 105008 (383) 103763 (358) 105009 (383)
CPO 5573 (36) 5772 (36) 5574 (36) 5771 (36)

Table B: Multinomial regression model performance. For the CPO, higher values indicate better model
performance. For the DIC and WAIC, lower values indicate better model performance.

1.3 Logistic regression model

Model ID Intercept (β0) Country (ζc) Age (αca) Spatial (ϕi) Covariates

L1 Constant IID IID IID Not included
L2 Constant IID IID Besag Not included
L3 Constant IID IID IID cfswever
L4 Constant IID IID Besag cfswever
L5 Constant IID IID IID cfswrecent
L6 Constant IID IID Besag cfswrecent

Table C: The logistic regression models that were considered. cfswever denotes the proportion of men who
have ever paid for sex and cfswrecent denotes the proportion of men who have paid for sex in the past 12
months.

We considered six logistic regression models (Table C) each including a constant β0 ∼ N (−2, 12), country
random effects ζc ∼ N (0, τ−1

ζ ), and age-country random effects αac ∼ N (0, τ−1
α ). The prior on β0 placed
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Figure A: Multinomial regression model performance, with the best performing model(s) according to each
criterion shown as a square. For the CPO, higher values indicate better model performance for the CPO. For
the DIC and WAIC, lower values indicate better model performance.

95% prior probability on the range 2-50% for the percentage of those with non-regular or multiple partners
who report transactional sex. We considered two specifications (IID, Besag) for the spatial random effects ϕi.
To aid estimation with sparse data, we also considered national-level covariates for the proportion of men
who have paid for sex ever cfswever or in the last twelve months cfswrecent, available from Hodgins et
al. (2022). For both random effect precision parameters τ ∈ {τα, τζ} we used the PC prior with base model
σ = 0 and P(σ > 2.5 = 0.01). For the regression parameters β ∈ {βcfswever, βcfswrecent} we used the prior
β ∼ N (0, 2.52).

1.3.1 Survey weighted likelihood

As with the multinomial regression model, we used survey weighted counts {y⋆
itak} and sample sizes {m⋆

itak}.
We used a generalised binomial pseudo-likelihood y⋆ ∼ xBinomial(m⋆, q), as implemented by family =
"xBinomial" in R-INLA, given by

p(y⋆ | m⋆, q) =
(

⌊m⋆⌋
⌊y⋆⌋

)
qy⋆

(1 − q)m⋆−y⋆

. (17)

to extend the binomial distribution to non-integer weighted counts and sample sizes.

1.3.2 Model selection

We selected the best model according to the CPO statistic, which was model L6. CPO values, along with
DIC and WAIC values for reference, are presented in Table D and Fig B. Inclusion of Besag spatial random
effects, rather than IID, consistently improved performance. Benefits from inclusion of covariates were more
marginal. That said, as some countries had no suitable surveys, we preferred to include covariate information
such that the estimates in these countries are based on some country-specific data.

1.4 Coverage assessment
To assess the calibration of our fitted model, we calculated the quantile q of each observation within the
posterior predictive distribution. For calibrated models, these quantiles, known as probability integral
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L1 L2 L3 L4 L5 L6
DIC 4662 (110) 4605 (111) 4662 (110) 4605 (111) 4662 (110) 4605 (111)
WAIC 4692 (115) 4624 (115) 4692 (115) 4624 (115) 4692 (115) 4624 (115)
CPO 950 (15) 969 (15) 951 (15) 970 (15) 950 (15) 970 (15)

Table D: Logistic regression model performance. For the CPO, higher values indicate better model performance.
For the DIC and WAIC, lower values indicate better model performance.

Figure B: Logistic regression model performance, with the best performing model(s) according to each
criterion shown as a square.

transform (PIT) values (Dawid 1984; Bosse et al. 2022), should follow a uniform distribution q ∼ U [0, 1]. To
generate samples from the posterior predictive distribution, we applied the multinomial likelihood to samples
from the latent field, setting the sample size to be the floor of the Kish effective sample size.

Using the PIT values, it is possible to calculate the empirical coverage of all (1 − α)100% (equal-tailed)
posterior predictive credible intervals. These empirical coverages can be compared to the nominal coverage
(1 − α) for each value of α ∈ [0, 1] to give empirical cumulative distribution function (ECDF) difference values.
This approach has the advantage of considering all possible confidence values at once. Säilynoja, Bürkner,
and Vehtari (2021) develop binomial distribution-based simultaneous confidence bands for ECDF difference
values which test uniformity.

Fig C shows the PIT histogram and ECDF difference plots for our final model, faceted by risk group.
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Figure C: Probability integral transform (PIT) histograms (top row) and empirical cumulative distribution
function (ECDF) difference plots (bottom row) for the final selected model.
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2 FSW population size estimation
To estimate the number of FSW by age group and country, we disaggregated country-specific estimates of
adult (15-49) FSW population size from Stevens et al. (2022) by age group.

First, we calculated the total sexually debuted population in each age group, in each country. To describe the
distribution of age at first sex, we used skew logistic distributions (Nguyen and Eaton 2022) with cumulative
distribution function given by

F (x) = (1 + exp(κc(µc − x)))−γc , (18)

where κc, µc, γc > 0 are country-specific shape, shape and skewness parameters respectively.

Next, we used the assumed Gamma(α = 10.4, β = 0.36) FSW age distribution in South Africa from the
Thembisa model (Johnson and Dorrington 2020) to calculate the implied ratio between the number of FSW
and the sexually debuted population in each age group. We assumed these ratios in South Africa were
applicable to every country to calculate the number of FSW by age group in all 13 countries (Fig D).

Figure D: Proportion of FSW by age group (including the age groups 30-34, 35-39, 40-44 and 45-49) as
produced by our disaggregation procedure.
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3 Prevalence, incidence and expected new infections reached
3.1 Calculation of prevalence and PLHIV
We calculated HIV prevalence ρiak and the number of people living with HIV (PLHIV) Hiak stratified
according to district, age group and risk group by disaggregating Naomi estimates by risk group.

To do so, we estimated HIV prevalence log odds ratios relative to the general population using age, country
and risk group specific HIV prevalence bio-marker survey data. We also included general population HIV
prevalence data, allowing us to fit a logistic regression model including indicator functions for each risk group,
and an indicator for being in the general population. The regression coefficients in this model correspond to
log odds, such that log odds ratios may be easily obtained by taking the difference.

To allow the log odds ratio for the highest risk group to vary based on general population prevalence we fit a
linear regression of the FSW log odds against the general population log odds. We ensured that the log odds
ratio for the highest risk group was at least as large as that of the second highest risk group.

Given the fitted log odds ratios log(ORk), we disaggregated Naomi estimates of PLHIV Hia on the logit scale
using numerically optimisation to obtain the value of θ minimising the function

θ̂ = arg min
θ∈[−10,10]

(∑
k

(logistic(θ + log(ORk)) · Niak) − Hia

)2

(19)

where logistic(x) = exp(x)/(1 + exp(x)) such that logistic(θ̂ + log(ORk)) = ρiak. Fig R - AD in S2 Text
show the resulting HIV prevalence estimates by risk group in each country. The number of PLHIV are then
obtained by Hiak = ρiakNiak, where Niak is the risk group population size.

3.2 Calculation of incidence and expected number of new infections
We calculated HIV incidence λiak and number of new HIV infections Iiak stratified according to district, age
group and risk group by linear disaggregation

Iia =
∑

k

Iiak =
∑

k

λiakNiak (20)

= 0 + λia2Nia2 + λia3Nia3 + λia4Nia4 (21)
= λia2 (Nia2 + RR3Nia3 + RR4(λia)Nia4) . (22)

Risk group specific HIV incidence estimates are then given by

λia1 = 0, (23)
λia2 = Iia/ (Nia2 + RR3Nia3 + RR4(λia)Nia4) , (24)
λia3 = RR3λia2, (25)
λia4 = RR4(λia)λia2. (26)

which we evaluated using Naomi model estimates of the number of new HIV infections Iia = λiaNia, HIV
infection risk ratios {RR3, RR4(λia)}, and risk group population sizes as above. The risk ratio RR4(λia)
was defined as a function of general population incidence. Fig AE - AQ in S2 Text show the resulting HIV
incidence estimates by risk group in each country. The number of new HIV infections are then Iiak = λiakNiak.

3.3 Calculation of expected new infections reached
We calculated the number of new infections that would be reached prioritising according to each possible
stratification of the population–that is for all 23 = 8 possible combinations of stratification by location, age,
and risk group. As an illustration, for stratification just by age, we aggregated the number of new HIV
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infections and HIV incidence as such

Ia =
∑
ik

Iiak, (27)

λa = Ia/
∑
ik

Niak. (28)

Under this stratification, individuals in each age group a are prioritised according to the highest HIV incidence
λa. By cumulatively summing the expected infections, for each fraction of the total population reached we
calculated the fraction of total expected new infections that would be reached. Fig AR - BD in S2 Text show
the percentage of new infections that would be reached prioritising according to each possible stratification
within each country.

This analysis was relatively simple. More involved analyses might consider prioritisation of a hypothetical
intervention which has some, possibly varying, probability of preventing HIV acquisition, as well as the costs
associated to its roll-out.
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