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Motivation

• R-INLA (Martins et al. 2013) only works for the particular models which
have been implemented

• Alternative implementation based on automatic differentation (AD) would
allow INLA to be used for a broader class of models

• For example, the HIV inference group at Imperial is working on a model
just outside R-INLA’s capacity
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What is INLA, why do we want to
use it, and why can’t we currently?
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Three-stage model

• Want to do Bayesian inference in spatiotemporal statistics
• Three-stage model covers most of the models used

(Observations) y ∼ p(y | x),
(Latent field) x ∼ p(x | θ),
(Hyperparameters) θ ∼ p(θ),

where y = (y1, . . . , yn), x = (x1, . . . , xn), θ = (θ1, . . . , θm)
• Interested in learning both (θ, x) from data y
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Have you tried MCMC?

• Markov chain Monte Carlo is slow for high dimensional correlated
parameter spaces

• We have both of these problems:
• If x represents spatiotemporal location then dim(x) = n will be very large
• Tobler’s first law of geography “everything is related to everything else, but near

things are more related than distant things” =⇒ x has lots of correlation structure
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Approximate Bayesian inference

• In applied statistics (at least in health and social science) we fit
misspecified models to biased and incomplete data

• Is inferential exactness (as nsim → ∞ for chain of length nsim) the scientific
bottleneck?

• If not =⇒ shouldn’t be afraid of approximate methods
• Approximate Bayesian computation (ABC)
• Variational Bayes
• Integrated nested Laplace approximation (INLA)
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Integrated nested Laplace approximation (I)

• See Rue, Martino, and Chopin (2009) or Blangiardo and Cameletti (2015)
• Approximate Bayesian inference for latent Gaussian models (LGMs), which

are three-stage models with middle layer

(Latent field) p(x | θ) = N (x | µ(θ), Q(θ)−1).

• Takes advantage of sparsity properties of Q(θ), i.e. if x is a Gaussian
Markov random field (GMRF)

• Gives approximate posterior marginals {p̃(xi | y)}n
i=1 and {p̃(θj | y)}m

j=1
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Integrated nested Laplace approximation (II)
1) First Laplace approximate hyperparameter posterior

p̃(θ | y) ∝ p(y | x, θ)p(x | θ)p(θ)
p̃G(x | θ, y)

∣∣∣∣
x=µ⋆(θ)

(1)

which can be marginalised to get p̃(θj | y)
2) Choose integration points and weights {θ(k), ∆(k)} to integrate w.r.t. (1)
3) Choose approximation for p̃(xi | θ, y) (simplest version: Gaussian)
4) Finally use quadrature to get

p̃(xi | y) =
K∑

k=1
p̃(xi | θ(k), y) × p̃(θ(k) | y) × ∆(k) (2)
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Naomi, evidence synthesis for HIV

• Combine HIV prevalence ρi and ART coverage
αi models together

• Model is close to, but not, a LGM
• Small non-linearities e.g. multiplying two latent

Gaussian fields

Ai ∼ Bin(ρiαi , Ni),

where Ai be the number observed on ART and
Ni the population

• Need something more flexible than R-INLA

Figure 1: Supermodel
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What do we do currently instead?
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Template Model Builder (I)

• Currently we use TMB (Kristensen et al. 2016)
• R package which implements the Laplace approximation for latent variable

models using AD (via CppAD)
• For more about AD see e.g. Griewank and Walther (2008)

• Write an objective function f (x, θ) in C++ (“user template”)
• We select f (x, θ) = − log p(y | x, θ)p(x | θ)p(θ)
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Template Model Builder (II)
#include <TMB.hpp>

template <class Type>
Type objective_function<Type>::operator()() {

// Define data e.g.
DATA_VECTOR(y);
// Define parameters e.g.
PARAMETER(mu);
// Calculate negative log-likelihood e.g.
nll = Type(0.0);
nll -= dnorm(y, mu, 1, true).sum()
return(nll);

}
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Template Model Builder (III)

• Performs the Laplace approximation Lf (θ) ≈ L⋆
f (θ) (step 1 of INLA) – use

R to optimise this with respect to θ to give θ̂
• MAP estimate of x conditional on θ = θ̂ (REML? Empirical Bayes?)
• Standard errors calculated using the δ-method (a Gaussian assumption)
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What do you want to do in the
future?
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Aims

• Compare accuracy of TMB to R-INLA
• Implement the INLA method using AD via TMB
• Apply new method to models with different degrees of non-linearity

• Small degree: Naomi.
• Larger degree: ODE models e.g. SIR or other compartmental models
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Thanks! Questions / comments /
corrections?
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