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Motivation I
• People on ART Ai can be used as supplementary data for small-area

estimation of HIV prevalence ρi

Ai ∼ Bin(Ni , ρiαi),
yi ∼ Bin(mi , ρi),

logit(αi) ∼ f (ϑα),
logit(ρi) ∼ g(ϑρ), i = 1, . . . , n,

• If f and g are Gaussian then model is almost, but not quite, a latent
Gaussian model by the definition of Rue, Martino, and Chopin (2009)
• This is due to small non-linearities (multiplying two latent Gaussian fields)
• Each observation depends on more than one element of the latent field
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Motivation II

• Previous slide is a simplified version of the
Naomi evidence synthesis model

• Countries to fit the model using their own data
(“in production”?)
• Can’t run long MCMC on the cluster for weeks, as

might be the case if this was one paper
• Can’t use R-INLA, require something more

flexible
• Currently using Template Model Builder TMB

(Kristensen et al. 2015)
Figure 1: A supermodel
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Aside: common theme I

• Combining flawed (sparse, aggregated) gold standard (measuring the thing
we want) data with other correlated (more available, high resolution) data
(measuring not exactly what we want)

• Consistently resulting in models with multiple outcomes (evidence
synthesis, multi-output)

• I think a lot of these are going to be not quite LGMs
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Aside: common theme II

• Examples include
• Naomi model: DHS data is “gold standard”, supported by ANC data from pregnant

women
• Sexual risk behaviour model: estimates of FSW population at national level,

supported by DHS data
• The national-level FSW estimates might be more like “bronze standard”
• DHS approximately asks “have you received money or gifts in exchange for sex in past 12

months”
• Loa loa prevalence and eyeworm history prevalence model: measuring eyeworm

history is a cheap proxy for Loa loa (Amoah, Diggle, and Giorgi 2020)
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Recap on latent Gaussian models

• Three-stage model

(Observations) y ∼ p(y | x),
(Latent field) x ∼ p(x | θ),
(Hyperparameters) θ ∼ p(θ),

where y = (y1, . . . , yn), x = (x1, . . . , xn), θ = (θ1, . . . , θm)
• Interested in learning both (θ, x) from data y
• Covers most of the models used in spatiotemporal statistics
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Recap on Integrated Nested Laplace Approximation I

• Rue, Martino, and Chopin (2009) or e.g. Blangiardo and Cameletti (2015)
• Approximate Bayesian inference for latent Gaussian models (LGMs), which

are three-stage models with middle layer

(Latent field) p(x | θ) = N (x | µ(θ), Q(θ)−1).

• R-INLA implementation takes advantage of sparsity properties of Q(θ),
i.e. if x is a Gaussian Markov random field (GMRF)
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Recap on Integrated Nested Laplace Approximation II

• Gives approximate posterior marginals {p̃(xi | y)}n
i=1 and {p̃(θj | y)}m

j=1
• To approximate posterior marginals below requires p̃(θ | y) and p̃(xi | θ, y)

p(xi | y) =
∫

p(xi , θ | y)dθ =
∫

p(xi | θ, y)p(θ | y)dθ, i = 1, . . . , n, (1)

p(θj | y) =
∫

p(θ | y)dθ−j j = 1, . . . , m. (2)
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Recap on Integrated Nested Laplace Approximation III

1) First Laplace approximate hyperparameter posterior

p̃(θ | y) ∝ p(y, x, θ)
p̃G(x | θ, y)

∣∣∣∣
x=µ⋆(θ)

(3)

which can be marginalised to get p̃(θj | y)
2) In both (1) and (2) we want to integrate w.r.t. (3), so choose integration

points and weights {θ(k), ∆(k)}
• For low m INLA uses a grid-strategy which I illustrate in the next slide
• For larger m this becomes too expensive and a CCD design is used
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Figure 2: An illustration of the INLA grid method for selecting integration points using a toy
Gaussian distribution for θ. Start at the mode and work outwards along the eigenvectors until
the density drops sufficiently low.
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Recap on Integrated Nested Laplace Approximation IV
3) Choose approximation for p̃(xi | θ, y)
• Simplest version (Rue and Martino 2007) is to marginalise the pG(x | θ, y)

p̃(xi | θ, y) = N (xi | µ⋆
i (θ), 1/q⋆

i (θ)) (4)

• The above is referred to as “Gaussian” approximation, and confusingly
there are two more complex ones called “simplified Laplace” and “Laplace”

• You can pick which one in R-INLA using the method option

4) Finally use quadrature to get

p̃(xi | y) =
K∑

k=1
p̃(xi | θ(k), y) × p̃(θ(k) | y) × ∆(k) (5)
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Template Model Builder I

• R package which implements the Laplace approximation for latent variable
models using AD (via CppAD)
• For more about AD see e.g. Griewank and Walther (2008)
• Useful for getting the mode, Hessian

• Write an objective function f (x, θ) in C++ (“user template”)
• We select f (x, θ) = − log p(y | x, θ)p(x | θ)p(θ)

12



Template Model Builder II
#include <TMB.hpp>

template <class Type>
Type objective_function<Type>::operator()() {

// Define data e.g.
DATA_VECTOR(y);
// Define parameters e.g.
PARAMETER(mu);
// Calculate negative log-likelihood e.g.
nll = Type(0.0);
nll -= dnorm(y, mu, 1, true).sum()
return(nll);

}
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Template Model Builder III

• Performs the Laplace approximation Lf (θ) ≈ L⋆
f (θ) and use R to optimise

this with respect to θ to give θ̂ (the central point in Figure 2)
• This is done by specifying the random argument to be the parameters that you want

to integrate out with a Laplace approximation (the latent field)
• MAP estimate of x conditional on θ̂
• Standard errors calculated using the δ-method (a Gaussian assumption)
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Adaptive Gaussian Hermite Quadrature

• Recent work by Alex Stringer and coauthors on AGHQ
• aghq R package and vignette (Stringer 2021)
• Theory paper (Bilodeau, Stringer, and Tang 2021)

• Gauss-Hermite quadrature is a way of picking nodes and weights, and is
based on the theory of polynomial interpolation

• The adaptive part means that it uses the location (mode) and curvature
(Hessian) of the target (posterior)

• Use k quadrature points
• If k is odd then they include the mode
• If k = 1 then it’s a Laplace approximation
• In the vignette k = 3 (for each dimension, so 3m total) is chosen quite often
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Epil example I

• Epilepsy example from Section 5.2. of Rue, Martino, and Chopin (2009)
(previously from BUGS):
• Patients i = 1, . . . , 59 each either assigned treatment Trti = 1 or placebo Trti = 0

to help with seizures
• Visits to clinics j = 1, . . . , 4 times with yij the number of seizures of the ith person in

the two weeks proceeding their jth visit to the clinic
• Covariates age Agei , baseline seizure counts Basei and an indicator for the final clinic

visit V4

16



Epil example II
This is what the model looks like (it’s a Poisson GLMM):

yij ∼ Poisson(λij),
λij = eηij ,

ηij = β0 + βBase log(Baselinej/4) + βTrtTrti + βTrt×BaseTrti × log(Baselinej/4)
+ βAge log(Agei) + βV4V4j + ϵi + νij , i = 1 : 59, j = 1 : 4,

β ∼ N (0, 1002), ∀β,

ϵi ∼ N (0, 1/τϵ),
νij ∼ N (0, 1/τν),
τϵ ∼ Γ(0.001, 0.001),
τν ∼ Γ(0.001, 0.001).
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Epil example III

• aghq package interfaces really easily with TMB!
• This is the code I used to fit the model with TMB

obj <- MakeADFun(
data = dat,
parameters = param,
# These are the ones integrated out with a Laplace approximation
random = c("epsilon", "nu"),
DLL = "epil"

)
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Epil example IV

• Then to fit it with aghq it’s only a very small modification

fit <- aghq::marginal_laplace_tmb(
obj,
k = 3,
startingvalue = c(param$beta, param$l_tau_epsilon, param$l_tau_nu)

)
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Stan INLA_G INLA_SL INLA_L TMB glmmTMB tmbstan aghq
beta_0 1.572 1.626 1.573 1.573 1.579 1.579 1.571 1.573
sd(beta_0) 0.076 0.077 0.078 0.078 0.073 0.073 0.081 0.076
beta_1 -0.968 -0.927 -0.954 -0.956 -0.949 -0.949 -0.961 -0.955
sd(beta_1) 0.420 0.419 0.419 0.419 0.396 0.396 0.426 0.411
beta_2 0.879 0.859 0.880 0.881 0.880 0.880 0.875 0.881
sd(beta_2) 0.136 0.138 0.138 0.138 0.129 0.129 0.135 0.135
beta_3 -0.103 -0.101 -0.103 -0.104 -0.103 -0.103 -0.105 -0.103
sd(beta_3) 0.087 0.086 0.086 0.086 0.086 0.086 0.086 0.086
beta_4 0.488 0.471 0.484 0.485 0.490 0.490 0.489 0.486
sd(beta_4) 0.352 0.364 0.364 0.364 0.342 0.342 0.375 0.357
beta_5 0.356 0.340 0.350 0.351 0.349 0.349 0.360 0.351
sd(beta_5) 0.212 0.213 0.213 0.213 0.200 0.200 0.215 0.209

20



Plan
• Test aghq for toy Naomi example

• Do as above with the Epil example, testing versus a long MCMC run
• Sometimes you have to look pretty hard for a node (element of the latent field)

where there are differences. In the INLA paper they do this by computing a SKLD
and ordering by maximum difference. Probably good to do here as well

• Extend aghq to replicate INLA functionality by adding the more complex
versions of p̃(xi | θ, y) then test that wih Naomi
• Håvard Rue philosophy: “do one thing and do it well”
• R-INLA implementation of INLA based on sparsity of Q(θ) that doesn’t hold up for

extended LGMs
• Wood (2020) on how to still do it

• Try the INLA without R-INLA on other almost LGMs and see how far it
can be pushed
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