Integrated nested Laplace approximations for extended latent Gaussian models with application to the Naomi HIV model
Waterloo SAS Student Seminar Series

Adam Howes

> Imperial College London

November 2022

Motivation

- Surveillance of the HIV epidemic in sub-Saharan Africa
- Want to estimate indicators used for monitoring and response, including:
- Prevalence ρ : the proportion of people who are HIV positive
- Treatment coverage α : the proportion of PLHIV on treatment
- Incidence λ : the proportion of people newly infected
- Aim to provide estimates at a district-level to enable precision public health

> This is a challenging task! Data is noisy, sparse and biased \Longrightarrow compelling case for thoughtful Bayesian modelling

A simple small-area model for prevalence

- Consider "small-areas" $i=1, \ldots, n$ (e.g. districts of a country)
- Simple random sample household-survey ${ }^{1}$ of size $m_{i}^{\text {HS }}$ where $y_{i}^{\text {HS }}$ people testing positive for HIV
- Could calculate direct estimates of prevalence by $y_{i}^{\mathrm{HS}} / m_{i}^{\mathrm{HS}}$

Because the survey is powered at a national-level, the $m_{i}^{\text {HS }}$ are small and direct estimates would be noisy \Longrightarrow use a model to smooth estimates

[^0]
A simple small-area model for prevalence

- We can use a binomial logistic regression of the form:

$$
\begin{aligned}
y_{i}^{\mathrm{HS}} & \sim \operatorname{Bin}\left(m_{i}^{\mathrm{HS}}, \rho_{i}^{\mathrm{HS}}\right), \\
\operatorname{logit}\left(\rho_{i}^{\mathrm{HS}}\right) & \sim g\left(\vartheta^{\mathrm{HS}}\right), \quad i=1, \ldots, n,
\end{aligned}
$$

- We usually set up g as a Gaussian spatial smoother
- This allows for pooling of information between districts

Geography

Graph

Figure 1: The Besag model, $\phi_{i} \left\lvert\, \phi_{-i} \sim \mathcal{N}\left(\frac{1}{n_{\delta i}} \sum_{j: j \sim i} \phi_{j}, \frac{1}{n_{\delta i} \tau_{\phi}}\right)\right.$.

Latent Gaussian models

- Three-stage Bayesian hierarchical model

(Observations)	$\mathbf{y} \sim p(\mathbf{y} \mid \mathbf{x})$,
(Latent field)	$\mathbf{x} \sim p(\mathbf{x} \mid \boldsymbol{\theta})$,
(Hyperparameters)	$\boldsymbol{\theta} \sim p(\boldsymbol{\theta})$,

where $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right), \mathbf{x}=\left(x_{1}, \ldots, x_{N}\right), \boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{m}\right)$

- Interested in learning both $(\boldsymbol{\theta}, \mathbf{x})$ from data \mathbf{y}
- If the middle layer is Gaussian, then it's a latent Gaussian model

$$
\text { (Latent field) } \quad p(\mathbf{x} \mid \boldsymbol{\theta})=\mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}(\boldsymbol{\theta}), \boldsymbol{Q}(\boldsymbol{\theta})^{-1}\right) .
$$

- Latent field is typically indexed by spatiotemporal location, such that $N>m$

Limitations of household surveys

- Household surveys cost millions to run so they don't happen very often
- e.g. DHS include $5 k-30 k$ households, and occurs around every 5 years

The snapshot they provide can be quite out of date, and difficult to base effective policy on \Longrightarrow need to use routinely collected data to help here

Adding ANC surveillance

- Pregnant women attending antenatal care clinics are routinely tested for HIV, to avoid mother-to-child transmission. This data source is:

1. More real-time than household surveys - can be collected e.g. monthly
2. More biased than household surveys - attendees are not representative

- If the this bias is consistent, we can still ANC data to supplement our model
\Longrightarrow model the level using the household survey data, and the trend using the ANC data

Adding ANC surveillance

- Suppose of $m_{i}^{\text {ANC }}$ ANC attendees, $y_{i}^{\text {ANC }}$ are HIV positive, and model

$$
\begin{aligned}
y_{i}^{\mathrm{ANC}} & \sim \operatorname{Bin}\left(m_{i}^{\mathrm{ANC}}, \rho_{i}^{\mathrm{ANC}}\right), \\
\operatorname{logit}\left(\rho_{i}^{\mathrm{ANC}}\right) & =\operatorname{logit}\left(\rho_{i}^{\mathrm{HS}}\right)+b_{i} \\
b_{i} & \sim \mathcal{N}\left(\beta_{b}, \sigma_{b}^{2}\right),
\end{aligned}
$$

- This is similar to using ρ_{i}^{ANC} as a covariate in the model for household survey prevalence, but this way takes into account sampling variation

Adding ART coverage

- Also interested in what proportion α_{i} of people living with HIV are receiving treatment, which may also be informative about prevalence
- If we record A_{i} attendees from a known population of N_{i} in each district, then this can be modelled by

$$
\begin{aligned}
A_{i} & \sim \operatorname{Bin}\left(N_{i}, \rho_{i}^{\mathrm{HS}} \alpha_{i}\right) \\
\operatorname{logit}\left(\alpha_{i}\right) & \sim \mathcal{N}\left(\beta_{\alpha}, \sigma_{\alpha}^{2}\right)
\end{aligned}
$$

- To be more sophisticated, you can also model the movement of people to receive treatment in districts other than the one they live in

Naomi evidence synthesis model

- Combining these three modules is the basis of the Naomi evidence synthesis model
- Used by countries to produce HIV estimates in a yearly process supported by UNAIDS
- Can't run long MCMC in this setting, so we require fast, accurate, approximations
- It's a complicated model, and requires something more flexible than R-INLA
- Currently using a package called Template Model Builder TMB

Figure 2: A supermodel

1	Review Unputs inputs	Model options	Fit model

Figure 3: Example of the user interface from https://naomi.unaids.org/

Template Model Builder

- TMB (Kristensen et al. 2015) is an R package which implements the Laplace approximation for latent variable models
- I use "Laplace approximation" to mean approximating the normalising constant with Laplace's method ${ }^{2}$
- To get started with TMB, write your $f(\mathbf{x}, \boldsymbol{\theta})$ in TMB's $C++$ syntax
- As pseudo-Bayesians, we choose (something proportional to) the log-posterior

$$
f(\mathbf{x}, \boldsymbol{\theta})=-\log p(\mathbf{y} \mid \mathbf{x}, \boldsymbol{\theta}) p(\mathbf{x} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta})
$$

- For example, for the model $\mathbf{y} \sim \mathcal{N}(\mu, 1)$ with $p(\mu) \propto 1$ then the TMB user template looks as follows

[^1]```
#include <TMB.hpp>
template <class Type>
Type objective_function<Type>::operator()() {
 // Define data e.g.
 DATA_VECTOR(y);
 // Define parameters e.g.
 PARAMETER(mu);
 // Calculate negative log-likelihood e.g.
 nll = Type(0.0);
 nll -= dnorm(y, mu, 1, true).sum()
 return(nll);
}
```


## Template Model Builder

- We can use TMB to obtain the Laplace approximation

$$
\left.\tilde{p}_{\mathrm{LA}}(\boldsymbol{\theta} \mid \mathbf{y}) \propto \frac{p(\mathbf{y}, \mathbf{x}, \boldsymbol{\theta})}{\tilde{p}_{\mathrm{G}}(\mathbf{x} \mid \boldsymbol{\theta}, \mathbf{y})}\right|_{\mathbf{x}=\mu(\boldsymbol{\theta})}
$$

- Integrate out a Gaussian approximation $\tilde{p}_{G}(\mathbf{x} \mid \boldsymbol{\theta}, \mathbf{y})$ to the latent field
- TMB uses automatic differentiation (Griewank and Walther 2008) via CppAD to do this, as well as help with numerical optimisation routines
- We then optimise this to obtain a mode $\hat{\boldsymbol{\theta}}$, and a Hessian $\boldsymbol{H}$ at the mode


## Integrated Nested Laplace Approximation

- Integrated nested Laplace approximation (INLA) (Rue, Martino, and Chopin 2009; Blangiardo and Cameletti 2015) is an approach to approximate inference which builds on the Laplace approximation
- Goal is to approximate posterior marginals $\left\{\tilde{p}\left(x_{i} \mid \mathbf{y}\right)\right\}_{i=1}^{n}$ and $\left\{\tilde{p}\left(\theta_{j} \mid \mathbf{y}\right)\right\}_{j=1}^{m}$

$$
\begin{equation*}
p\left(x_{i} \mid \mathbf{y}\right)=\int p\left(x_{i}, \boldsymbol{\theta} \mid \mathbf{y}\right) \mathrm{d} \boldsymbol{\theta}=\int p\left(x_{i} \mid \boldsymbol{\theta}, \mathbf{y}\right) p(\boldsymbol{\theta} \mid \mathbf{y}) \mathrm{d} \boldsymbol{\theta}, \quad i=1, \ldots, N, \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
p\left(\theta_{j} \mid \mathbf{y}\right)=\int p(\boldsymbol{\theta} \mid \mathbf{y}) \mathrm{d} \boldsymbol{\theta}_{-j} \quad j=1, \ldots, m \tag{2}
\end{equation*}
$$

- To do so, we require the approximations $\tilde{p}(\boldsymbol{\theta} \mid \mathbf{y})$ and $\tilde{p}\left(x_{i} \mid \boldsymbol{\theta}, \mathbf{y}\right)$
- There are four steps as to how the method works (bare with me!)


## Step 1

1) First Laplace approximate hyperparameter posterior

$$
\begin{equation*}
\left.\tilde{p}_{\mathrm{LA}}(\boldsymbol{\theta} \mid \mathbf{y}) \propto \frac{p(\mathbf{y}, \mathbf{x}, \boldsymbol{\theta})}{\tilde{p}_{\mathrm{G}}(\mathbf{x} \mid \boldsymbol{\theta}, \mathbf{y})}\right|_{\mathbf{x}=\mu(\boldsymbol{\theta})} \tag{3}
\end{equation*}
$$

which can be marginalised to get $\tilde{p}\left(\theta_{j} \mid \mathbf{y}\right)$

- Notice that this is the same object we had been working with in TMB
- We will use this approximation nested within integrals like this one

$$
\int p\left(x_{i}, \boldsymbol{\theta} \mid \mathbf{y}\right) \mathrm{d} \boldsymbol{\theta}=\int p\left(x_{i} \mid \boldsymbol{\theta}, \mathbf{y}\right) \tilde{p}_{\mathrm{LA}}(\boldsymbol{\theta} \mid \mathbf{y}) \mathrm{d} \boldsymbol{\theta}
$$

hence the name INLA

## Step 2

2) In both Equations (1) and (2) we want to integrate w.r.t. $\boldsymbol{\theta}$, so choose integration nodes and weights $\{\boldsymbol{\theta}(\mathbf{z}), \omega(\mathbf{z})\}_{\mathbf{z} \in \mathcal{Z}}$

- For low m R-INLA uses a grid-strategy
- For larger $m$ this becomes too expensive and R-INLA uses a CCD design
- We plan to use adaptive Gaussian Hermite quadrature (AGHQ), which has recently been shown to have theoretical guarantees (Bilodeau, Stringer, and Tang 2021) and is implemented in the aghq R package (Stringer 2021)


Figure 4: An illustration of the R-INLA grid method for selecting integration nodes using a toy bivariate Gaussian distribution for $\boldsymbol{\theta}$. Start at the mode and work outwards along the eigenvectors until the density drops sufficiently low.

## Adaptive Gaussian Hermite Quadrature

- Gauss-Hermite quadrature is one way to pick nodes $\mathbf{z} \in \mathcal{Q}(m, k)$ and weights $\omega(\mathbf{z}): \mathcal{Q}(m, k) \rightarrow \mathbb{R}$, based on the theory of polynomial interpolation
- The adaptive part means that it uses the location (mode) and curvature (Hessian) of the target (posterior) so that $\boldsymbol{\theta}(\mathbf{z})=\hat{\boldsymbol{\theta}}+\mathbf{L z}$
- Works particularly well when the integrand is pretty Gaussian
- Use $k$ quadrature nodes per dimension, e.g. if $k=3$ then $3^{m}$ total nodes

Key benefits: no manual tuning, works well (and starting to get some theory) in statistical contexts


Figure 5: One dimensional example of AGHQ with $3^{1}=3$ nodes. If $k$ is odd then the mode is always included.


Figure 6: Two dimensional example of AGHQ with $3^{2}=9$ nodes. Here we use the product rule so that the points in 2D are just $1 \mathrm{D} \times 1 \mathrm{D}$.

## Step 3

3) Choose approximation for $\tilde{p}\left(x_{i} \mid \boldsymbol{\theta}, \mathbf{y}\right)$

- Simplest version (Rue and Martino 2007) is to marginalise $\tilde{\rho}_{G}(\mathbf{x} \mid \boldsymbol{\theta}, \mathbf{y})$

$$
\begin{equation*}
\tilde{p}_{G}\left(x_{i} \mid \boldsymbol{\theta}, \mathbf{y}\right)=\mathcal{N}\left(x_{i} \mid \mu_{i}(\boldsymbol{\theta}), 1 / q_{i}(\boldsymbol{\theta})\right) \tag{4}
\end{equation*}
$$

- In R-INLA, the above is referred to as method = "gaussian"
- This is also what is currently used in aghq

There are more accurate (and complicated) versions which I will talk briefly about in a minute!

## Step 4

4) Finally, use quadrature to combine

- our approximation $\tilde{p}_{\mathrm{LA}}(\boldsymbol{\theta} \mid \mathbf{y})$ from Step 1,
- some choice of integration nodes and weights $\{\boldsymbol{\theta}(\mathbf{z}), \omega(\mathbf{z})\}$ Step 2,
- some choice of approximation $\tilde{p}\left(x_{i} \mid \boldsymbol{\theta}, \mathbf{y}\right)$ from Step 3 to give

$$
\begin{equation*}
\tilde{p}\left(x_{i} \mid \mathbf{y}\right)=\sum_{\mathbf{z} \in \mathcal{Z}} \tilde{p}\left(x_{i} \mid \boldsymbol{\theta}(\mathbf{z}), \mathbf{y}\right) \times \tilde{p}_{\text {LA }}(\boldsymbol{\theta}(\mathbf{z}) \mid \mathbf{y}) \times \omega(\mathbf{z}) \tag{5}
\end{equation*}
$$

## Using a Laplace approximation for Step 3

- Previously had been taking the marginals of $\tilde{p}_{G}(\mathbf{x} \mid \boldsymbol{\theta}, \mathbf{y})$
- Alternative: calculate a new Laplace approximation for each $x_{i}$

$$
\tilde{p}_{L \mathrm{~A}}\left(x_{i}, \boldsymbol{\theta}, \mathbf{y}\right)=\left.\frac{p\left(x_{i}, \mathbf{x}_{-i}, \boldsymbol{\theta}, \mathbf{y}\right)}{\tilde{p}_{G}\left(\mathbf{x}_{-i} \mid x_{i}, \boldsymbol{\theta}, \mathbf{y}\right)}\right|_{\mathbf{x}_{-i}=\mu_{-i}\left(x_{i}, \boldsymbol{\theta}\right)}
$$

where $\tilde{p}_{G}(\mathbf{x} \mid \boldsymbol{\theta}, \mathbf{y})=\mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{-i}\left(x_{i}, \boldsymbol{\theta}\right), \boldsymbol{Q}_{-i}\left(x_{i}, \boldsymbol{\theta}\right)^{-1}\right)$

- Problem: $N$ can be big, and we will need to recalculate this for each $\left(x_{i}, \boldsymbol{\theta}\right)$
- Ideas like using $\boldsymbol{\mu}(\boldsymbol{\theta})_{-i}$ to initialise Newton optimisation to find $\boldsymbol{\mu}_{-i}\left(x_{i}, \boldsymbol{\theta}\right)$ could help


## Cheaper approximate approximations

- Rue, Martino, and Chopin (2009) found a way to do this in a cheaper and more approximate way based on assuming a sparse precision for $\mathbf{x}$
- a.k.a. that $\mathbf{x}$ is a Gaussian Markov random field (GMRF)
- Wood (2020) extended their approximation to work for the case when $\mathbf{x}$ does not have a sparse precision

Plan: see how long a naive version without these modifications takes, then use this work to get speed-ups as required

## Epilepsy example

- Replication of example from Section 5.2. of Rue, Martino, and Chopin (2009), and previously from BUGS manual
- Patients $i=1, \ldots, 59$ each either assigned treatment $\operatorname{Trt}_{i}=1$ or placebo $\operatorname{Trt}_{i}=0$ to help with seizures
- Visits to clinics $j=1, \ldots, 4$ times with $y_{i j}$ the number of seizures of the $i$ th person in the two weeks proceeding their $j$ th visit to the clinic
- Covariates age Age ${ }_{i}$, baseline seizure counts Base $_{i}$ and an indicator for the final clinic visit $\mathrm{V}_{4}$

Notebook for this example at athowes.github.io/elgm-inf/epil

## Epilepsy example

The model is a Poisson GLMM:

$$
\begin{aligned}
& y_{i j} \sim \operatorname{Poisson}\left(\lambda_{i j}\right), \\
& \lambda_{i j}=e^{\eta_{i j}} \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& +\beta_{\text {Age }} \log \left(\mathrm{Age}_{i}\right)+\beta_{\mathrm{V}_{4}} \mathrm{~V}_{4 j}+\epsilon_{i}+\nu_{i j}, \quad i=1: 59, \quad j=1: 4, \\
& \beta \sim \mathcal{N}\left(0,100^{2}\right), \quad \forall \beta, \\
& \epsilon_{i} \sim \mathcal{N}\left(0,1 / \tau_{\epsilon}\right), \\
& \nu_{i j} \sim \mathcal{N}\left(0,1 / \tau_{\nu}\right), \\
& \tau_{\epsilon} \sim \Gamma(0.001,0.001), \\
& \tau_{\nu} \sim \Gamma(0.001,0.001) .
\end{aligned}
$$

## Inference

Implement the following inference procedures:

1. HMC NUTS via tmbstan and TMB
2. Grid with Gaussian marginals via R-INLA
3. Grid with simplified Laplace marginals via R-INLA
4. Grid with Laplace marginals via R-INLA
5. EB with Gaussian marginals via TMB
6. AGHQ with Gaussian marginals via aghq and TMB
7. EB with Laplace marginals via aghq and $T M B^{3}$
[^2]|  | tmbstan | R-INLA-G | R-INLA-SL | R-INLA-L | TMB | aghq | adam |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbb{E}\left[\beta_{0}\right]$ | 1.57 | 1.63 | 1.57 | 1.57 | 1.63 | 1.63 | 1.57 |
| $\operatorname{sd}\left[\beta_{0}\right]$ | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 |
| $\mathbb{E}\left[\beta_{1}\right]$ | -0.91 | -0.93 | -0.95 | -0.96 | -0.93 | -0.91 | -0.95 |
| $\operatorname{sd}\left[\beta_{1}\right]$ | 0.42 | 0.42 | 0.42 | 0.42 | 0.41 | 0.41 | 0.42 |
| $\mathbb{E}\left[\beta_{2}\right]$ | 0.89 | 0.86 | 0.88 | 0.88 | 0.86 | 0.86 | 0.88 |
| $\operatorname{sd}\left[\beta_{2}\right]$ | 0.13 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 |
| $\mathbb{E}\left[\beta_{3}\right]$ | -0.10 | -0.10 | -0.10 | -0.10 | -0.10 | -0.10 | -0.10 |
| $\operatorname{sd}\left[\beta_{3}\right]$ | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 |
| $\mathbb{E}\left[\beta_{4}\right]$ | 0.47 | 0.47 | 0.48 | 0.48 | 0.47 | 0.45 | 0.48 |
| $\operatorname{sd}\left[\beta_{4}\right]$ | 0.36 | 0.36 | 0.36 | 0.36 | 0.36 | 0.35 | 0.36 |
| $\mathbb{E}\left[\beta_{5}\right]$ | 0.33 | 0.34 | 0.35 | 0.35 | 0.34 | 0.33 | 0.35 |
| $\operatorname{sd}\left[\beta_{5}\right]$ | 0.21 | 0.21 | 0.21 | 0.21 | 0.21 | 0.21 | 0.21 |



Figure 7: The intercept parameter has the greatest difference between the Gaussian and Laplace approaches. The results in pink are from HMC NUTS.

## Comparison approaches

- You could look at the summaries like the mean and standard deviation of each of the posterior marginals as we have above
- It worked for $\beta_{0}$, but usually this isn't very informative, and it's better to compare the whole posterior distributions
- One way to do this is via Kolmogorov-Smirnov statistics, which give the maximum difference between two empirical CDFs
- Also considering other approaches!
- PSIS: is your approximate distribution a good importance sampling proposal for your target? If not, maybe there is an issue!
- SBC: generating $(\theta, y)$ first $\theta$ then $y \mid \theta$ should be the same as first $y$ then then $\theta \mid y$
- MMD: compute a distance using kernels (e.g. Gaussian)


## Prevalence, ANC, ART example

- Simulate data from model with all three components and particular (known) parameter values

Notebook for this example at athowes.github.io/elgm-inf/prev-anc-art

## Inference

Implement the following inference procedures:

1. HMC NUTS via tmbstan and TMB
2. EB with Gaussian marginals via TMB
3. AGHQ with Gaussian marginals via aghq and TMB

- All of these approaches share the same $\mathrm{C}++$ template, so the models are identical! This is often very difficult to ensure, so we're very fortunate here ${ }^{4}$

[^3]
## Results



Figure 8: Example KS results from five simulated datasets.

## Conclusions

My main comment is that several aspects of the computational machineery that is presented by Rue and his colleagues could benefit from the use of a numerical technique known as automatic differentiation (AD) ... By the use of AD one could obtain a system that is automatic from a user's perspective. . . the benefit would be a fast, flexible and easy-to-use system for doing Bayesian analysis in models with Gaussian latent variables

- Hans J. Skaug (coauthor of TMB), RSS discussion of Rue, Martino, and Chopin (2009)


## Conclusions

- Hopeful that we'll give fast, accurate inferences for Naomi!
- Implementation as a part of aghq combining simplified INLA and AGHQ, enabled by automatic differentiation, will provide flexible use of the method
- Will be of interest to advanced users of R-INLA who would like specify models outside a formula interface (similar to users of brms v.s. Stan)
- This describes many in the HIV inference group hiv-inference.org ${ }^{5}$

[^4]
## Thanks for listening!

- Joint work with Alex Stringer (Waterloo) and my PhD supervisors Seth Flaxman (Oxford) and Jeff Eaton (Imperial)
- The code for this project is at github.com/athowes/elgm-inf
- You can find me online at athowes.github.io


## References I

Bilodeau, Blair, Alex Stringer, and Yanbo Tang. 2021. "Stochastic Convergence Rates and Applications of Adaptive Quadrature in Bayesian Inference." https://arxiv.org/abs/2102.06801.
Blangiardo, Marta, and Michela Cameletti. 2015. Spatial and spatio-temporal Bayesian models with R-INLA. John Wiley \& Sons.
Griewank, Andreas, and Andrea Walther. 2008. Evaluating derivatives: principles and techniques of algorithmic differentiation. Vol. 105. Siam. Kristensen, Kasper, Anders Nielsen, Casper W Berg, Hans Skaug, and Brad Bell. 2015. "TMB: automatic differentiation and Laplace approximation." arXiv Preprint arXiv:1509.00660.
Rue, Håvard, and Sara Martino. 2007. "Approximate Bayesian inference for hierarchical Gaussian Markov random field models." Journal of Statistical Planning and Inference 137 (10): 3177-92.

## References II

Rue, Håvard, Sara Martino, and Nicolas Chopin. 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations." Journal of the Royal Statistical Society: Series b (Statistical Methodology) 71 (2): 319-92.
Stringer, Alex. 2021. "Implementing Approximate Bayesian Inference Using Adaptive Quadrature: The Aghq Package." https://arxiv.org/abs/2101.04468.
Wood, Simon N. 2020. "Simplified Integrated Nested Laplace Approximation." Biometrika 107 (1): 223-30.


[^0]:    ${ }^{1}$ In reality a complex survey design is used, often with urban rural stratification.

[^1]:    ${ }^{2}$ Rather than approximating the posterior with a Gaussian, which I call a Gaussian approximation.

[^2]:    ${ }^{3}$ I'm working on AGHQ with Gaussian marginals via aghq and TMB. I am using the aghq package, just with $k=1$ corresponding to EB

[^3]:    ${ }^{4}$ i.e. thanks to Kasper and Alex for making tmbstan and 'aghq respectively!

[^4]:    ${ }^{5}$ See athowes.github.io/inla-sandbox/ for some examples of understanding R-INLA internals.

