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Motivation

• Surveillance of the HIV epidemic in sub-Saharan Africa
• Want to estimate indicators used for monitoring and response, including:

• Prevalence ρ: the proportion of people who are HIV positive
• Treatment coverage α: the proportion of PLHIV on treatment
• Incidence λ: the proportion of people newly infected

• Aim to provide estimates at a district-level to enable precision public health

This is a challenging task! Data is noisy, sparse and biased =⇒
compelling case for thoughtful Bayesian modelling

2



A simple small-area model for prevalence

• Consider “small-areas” i = 1, . . . , n (e.g. districts of a country)
• Simple random sample household-survey1 of size mHS

i where yHS
i people

testing positive for HIV
• Could calculate direct estimates of prevalence by yHS

i /mHS
i

Because the survey is powered at a national-level, the mHS
i are

small and direct estimates would be noisy =⇒ use a model to
smooth estimates

1In reality a complex survey design is used, often with urban rural stratification.
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A simple small-area model for prevalence

• We can use a binomial logistic regression of the form:

yHS
i ∼ Bin(mHS

i , ρHS
i ),

logit(ρHS
i ) ∼ g(ϑHS), i = 1, . . . , n,

• We usually set up g as a Gaussian spatial smoother
• This allows for pooling of information between districts
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Geography Graph

Figure 1: The Besag model, ϕi | ϕ−i ∼ N
(

1
nδi

∑
j:j∼i ϕj ,

1
nδi τϕ

)
.
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Latent Gaussian models
• Three-stage Bayesian hierarchical model

(Observations) y ∼ p(y | x),
(Latent field) x ∼ p(x | θ),
(Hyperparameters) θ ∼ p(θ),

where y = (y1, . . . , yn), x = (x1, . . . , xN), θ = (θ1, . . . , θm)
• Interested in learning both (θ, x) from data y
• If the middle layer is Gaussian, then it’s a latent Gaussian model

(Latent field) p(x | θ) = N (x | µ(θ), Q(θ)−1).

• Latent field is typically indexed by spatiotemporal location, such that
N > m
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Limitations of household surveys

• Household surveys cost millions to run so they don’t happen very often
• e.g. DHS include 5k-30k households, and occurs around every 5 years

The snapshot they provide can be quite out of date, and difficult
to base effective policy on =⇒ need to use routinely collected
data to help here
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Adding ANC surveillance

• Pregnant women attending antenatal care clinics are routinely tested for
HIV, to avoid mother-to-child transmission. This data source is:

1. More real-time than household surveys – can be collected e.g. monthly
2. More biased than household surveys – attendees are not representative
• If the this bias is consistent, we can still ANC data to supplement our model

=⇒ model the level using the household survey data, and the
trend using the ANC data
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Adding ANC surveillance

• Suppose of mANC
i ANC attendees, yANC

i are HIV positive, and model

yANC
i ∼ Bin(mANC

i , ρANC
i ),

logit(ρANC
i ) = logit(ρHS

i ) + bi ,

bi ∼ N (βb, σ2
b),

• This is similar to using ρANC
i as a covariate in the model for household

survey prevalence, but this way takes into account sampling variation

9



Adding ART coverage

• Also interested in what proportion αi of people living with HIV are
receiving treatment, which may also be informative about prevalence

• If we record Ai attendees from a known population of Ni in each district,
then this can be modelled by

Ai ∼ Bin(Ni , ρHS
i αi),

logit(αi) ∼ N (βα, σ2
α).

• To be more sophisticated, you can also model the movement of people to
receive treatment in districts other than the one they live in
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Naomi evidence synthesis model

• Combining these three modules is the basis of
the Naomi evidence synthesis model

• Used by countries to produce HIV estimates in
a yearly process supported by UNAIDS

• Can’t run long MCMC in this setting, so we
require fast, accurate, approximations

• It’s a complicated model, and requires
something more flexible than R-INLA

• Currently using a package called Template
Model Builder TMB

Figure 2: A supermodel
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Figure 3: Example of the user interface from https://naomi.unaids.org/
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Template Model Builder

• TMB (Kristensen et al. 2015) is an R package which implements the
Laplace approximation for latent variable models

• I use “Laplace approximation” to mean approximating the normalising
constant with Laplace’s method2

• To get started with TMB, write your f (x, θ) in TMB’s C++ syntax
• As pseudo-Bayesians, we choose (something proportional to) the

log-posterior
f (x, θ) = − log p(y | x, θ)p(x | θ)p(θ)

• For example, for the model y ∼ N (µ, 1) with p(µ) ∝ 1 then the TMB
user template looks as follows

2Rather than approximating the posterior with a Gaussian, which I call a Gaussian approximation.
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#include <TMB.hpp>

template <class Type>
Type objective_function<Type>::operator()() {

// Define data e.g.
DATA_VECTOR(y);
// Define parameters e.g.
PARAMETER(mu);
// Calculate negative log-likelihood e.g.
nll = Type(0.0);
nll -= dnorm(y, mu, 1, true).sum()
return(nll);

}
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Template Model Builder

• We can use TMB to obtain the Laplace approximation

p̃LA(θ | y) ∝ p(y, x, θ)
p̃G(x | θ, y)

∣∣∣∣
x=µ(θ)

• Integrate out a Gaussian approximation p̃G(x | θ, y) to the latent field
• TMB uses automatic differentiation (Griewank and Walther 2008) via

CppAD to do this, as well as help with numerical optimisation routines
• We then optimise this to obtain a mode θ̂, and a Hessian H at the mode
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Integrated Nested Laplace Approximation
• Integrated nested Laplace approximation (INLA) (Rue, Martino, and

Chopin 2009; Blangiardo and Cameletti 2015) is an approach to
approximate inference which builds on the Laplace approximation

• Goal is to approximate posterior marginals {p̃(xi | y)}n
i=1 and {p̃(θj | y)}m

j=1

p(xi | y) =
∫

p(xi , θ | y)dθ =
∫

p(xi | θ, y)p(θ | y)dθ, i = 1, . . . , N ,

(1)

p(θj | y) =
∫

p(θ | y)dθ−j j = 1, . . . , m. (2)

• To do so, we require the approximations p̃(θ | y) and p̃(xi | θ, y)
• There are four steps as to how the method works (bare with me!)
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Step 1

1) First Laplace approximate hyperparameter posterior

p̃LA(θ | y) ∝ p(y, x, θ)
p̃G(x | θ, y)

∣∣∣∣
x=µ(θ)

(3)

which can be marginalised to get p̃(θj | y)
• Notice that this is the same object we had been working with in TMB
• We will use this approximation nested within integrals like this one∫

p(xi , θ | y)dθ =
∫

p(xi | θ, y)p̃LA(θ | y)dθ

hence the name INLA
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Step 2

2) In both Equations (1) and (2) we want to integrate w.r.t. θ, so choose
integration nodes and weights {θ(z), ω(z)}z∈Z

• For low m R-INLA uses a grid-strategy
• For larger m this becomes too expensive and R-INLA uses a CCD design
• We plan to use adaptive Gaussian Hermite quadrature (AGHQ), which has

recently been shown to have theoretical guarantees (Bilodeau, Stringer, and
Tang 2021) and is implemented in the aghq R package (Stringer 2021)
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Figure 4: An illustration of the R-INLA grid method for selecting integration nodes using a
toy bivariate Gaussian distribution for θ. Start at the mode and work outwards along the
eigenvectors until the density drops sufficiently low.
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Adaptive Gaussian Hermite Quadrature

• Gauss-Hermite quadrature is one way to pick nodes z ∈ Q(m, k) and
weights ω(z) : Q(m, k) → R, based on the theory of polynomial
interpolation

• The adaptive part means that it uses the location (mode) and curvature
(Hessian) of the target (posterior) so that θ(z) = θ̂ + Lz

• Works particularly well when the integrand is pretty Gaussian
• Use k quadrature nodes per dimension, e.g. if k = 3 then 3m total nodes

Key benefits: no manual tuning, works well (and starting to get
some theory) in statistical contexts
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Figure 5: One dimensional example of AGHQ with 31 = 3 nodes. If k is odd then the mode
is always included.
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Figure 6: Two dimensional example of AGHQ with 32 = 9 nodes. Here we use the product
rule so that the points in 2D are just 1D x 1D.
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Step 3

3) Choose approximation for p̃(xi | θ, y)
• Simplest version (Rue and Martino 2007) is to marginalise p̃G(x | θ, y)

p̃G(xi | θ, y) = N (xi | µi(θ), 1/qi(θ)) (4)

• In R-INLA, the above is referred to as method = "gaussian"
• This is also what is currently used in aghq

There are more accurate (and complicated) versions which I will
talk briefly about in a minute!
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Step 4

4) Finally, use quadrature to combine
• our approximation p̃LA(θ | y) from Step 1,
• some choice of integration nodes and weights {θ(z), ω(z)} Step 2,
• some choice of approximation p̃(xi | θ, y) from Step 3 to give

p̃(xi | y) =
∑
z∈Z

p̃(xi | θ(z), y) × p̃LA(θ(z) | y) × ω(z) (5)
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Using a Laplace approximation for Step 3

• Previously had been taking the marginals of p̃G(x | θ, y)
• Alternative: calculate a new Laplace approximation for each xi

p̃LA(xi , θ, y) = p(xi , x−i , θ, y)
p̃G(x−i | xi , θ, y)

∣∣∣∣
x−i =µ−i (xi ,θ)

where p̃G(x | θ, y) = N (x | µ−i(xi , θ), Q−i(xi , θ)−1)
• Problem: N can be big, and we will need to recalculate this for each (xi , θ)
• Ideas like using µ(θ)−i to initialise Newton optimisation to find µ−i(xi , θ)

could help
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Cheaper approximate approximations

• Rue, Martino, and Chopin (2009) found a way to do this in a cheaper and
more approximate way based on assuming a sparse precision for x
• a.k.a. that x is a Gaussian Markov random field (GMRF)

• Wood (2020) extended their approximation to work for the case when x
does not have a sparse precision

Plan: see how long a naive version without these modifications
takes, then use this work to get speed-ups as required
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Epilepsy example

• Replication of example from Section 5.2. of Rue, Martino, and Chopin
(2009), and previously from BUGS manual

• Patients i = 1, . . . , 59 each either assigned treatment Trti = 1 or placebo
Trti = 0 to help with seizures

• Visits to clinics j = 1, . . . , 4 times with yij the number of seizures of the ith
person in the two weeks proceeding their jth visit to the clinic

• Covariates age Agei , baseline seizure counts Basei and an indicator for the
final clinic visit V4

Notebook for this example at athowes.github.io/elgm-inf/epil

27



Epilepsy example
The model is a Poisson GLMM:

yij ∼ Poisson(λij),
λij = eηij ,

ηij = β0 + βBase log(Baselinej/4) + βTrtTrti + βTrt×BaseTrti × log(Baselinej/4)
+ βAge log(Agei) + βV4V4j + ϵi + νij , i = 1 : 59, j = 1 : 4,

β ∼ N (0, 1002), ∀β,

ϵi ∼ N (0, 1/τϵ),
νij ∼ N (0, 1/τν),
τϵ ∼ Γ(0.001, 0.001),
τν ∼ Γ(0.001, 0.001).
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Inference

Implement the following inference procedures:

1. HMC NUTS via tmbstan and TMB
2. Grid with Gaussian marginals via R-INLA
3. Grid with simplified Laplace marginals via R-INLA
4. Grid with Laplace marginals via R-INLA
5. EB with Gaussian marginals via TMB
6. AGHQ with Gaussian marginals via aghq and TMB
7. EB with Laplace marginals via aghq and TMB3

3I’m working on AGHQ with Gaussian marginals via aghq and TMB. I am using the aghq package, just
with k = 1 corresponding to EB
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tmbstan R-INLA-G R-INLA-SL R-INLA-L TMB aghq adam

E[β0] 1.57 1.63 1.57 1.57 1.63 1.63 1.57
sd[β0] 0.08 0.08 0.08 0.08 0.08 0.08 0.08
E[β1] -0.91 -0.93 -0.95 -0.96 -0.93 -0.91 -0.95
sd[β1] 0.42 0.42 0.42 0.42 0.41 0.41 0.42
E[β2] 0.89 0.86 0.88 0.88 0.86 0.86 0.88
sd[β2] 0.13 0.14 0.14 0.14 0.14 0.14 0.14
E[β3] -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10
sd[β3] 0.09 0.09 0.09 0.09 0.09 0.09 0.09
E[β4] 0.47 0.47 0.48 0.48 0.47 0.45 0.48
sd[β4] 0.36 0.36 0.36 0.36 0.36 0.35 0.36
E[β5] 0.33 0.34 0.35 0.35 0.34 0.33 0.35
sd[β5] 0.21 0.21 0.21 0.21 0.21 0.21 0.21
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Figure 7: The intercept parameter has the greatest difference between the Gaussian and
Laplace approaches. The results in pink are from HMC NUTS.
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Comparison approaches

• You could look at the summaries like the mean and standard deviation of
each of the posterior marginals as we have above

• It worked for β0, but usually this isn’t very informative, and it’s better to
compare the whole posterior distributions

• One way to do this is via Kolmogorov-Smirnov statistics, which give the
maximum difference between two empirical CDFs

• Also considering other approaches!
• PSIS: is your approximate distribution a good importance sampling proposal for your

target? If not, maybe there is an issue!
• SBC: generating (θ, y) first θ then y | θ should be the same as first y then then θ | y
• MMD: compute a distance using kernels (e.g. Gaussian)
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Prevalence, ANC, ART example

• Simulate data from model with all three components and particular
(known) parameter values

Notebook for this example at athowes.github.io/elgm-inf/prev-
anc-art
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Inference

Implement the following inference procedures:

1. HMC NUTS via tmbstan and TMB
2. EB with Gaussian marginals via TMB
3. AGHQ with Gaussian marginals via aghq and TMB

• All of these approaches share the same C++ template, so the models are
identical! This is often very difficult to ensure, so we’re very fortunate here4

4i.e. thanks to Kasper and Alex for making tmbstan and ‘aghq respectively!
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Results
phi_prev[5]
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Figure 8: Example KS results from five simulated datasets. 35



Conclusions

My main comment is that several aspects of the computational ma-
chineery that is presented by Rue and his colleagues could benefit
from the use of a numerical technique known as automatic
differentiation (AD) . . . By the use of AD one could obtain a system
that is automatic from a user’s perspective. . . the benefit would be
a fast, flexible and easy-to-use system for doing Bayesian analysis in
models with Gaussian latent variables

– Hans J. Skaug (coauthor of TMB), RSS discussion of Rue, Martino, and
Chopin (2009)
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Conclusions

• Hopeful that we’ll give fast, accurate inferences for Naomi!
• Implementation as a part of aghq combining simplified INLA and AGHQ,

enabled by automatic differentiation, will provide flexible use of the method
• Will be of interest to advanced users of R-INLA who would like specify models

outside a formula interface (similar to users of brms v.s. Stan)
• This describes many in the HIV inference group hiv-inference.org5

5See athowes.github.io/inla-sandbox/ for some examples of understanding R-INLA internals.
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Thanks for listening!

• Joint work with Alex Stringer (Waterloo) and my PhD supervisors Seth
Flaxman (Oxford) and Jeff Eaton (Imperial)

• The code for this project is at github.com/athowes/elgm-inf
• You can find me online at athowes.github.io
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