
Deterministic Bayesian inference
methods for the Naomi model

HIV Inference Lab Group Meeting

Adam Howes

Imperial College London

April 2023

1

The Naomi model

• Naomi is a complicated spatio-temporal
evidence synthesis model

• Used by countries to produce HIV estimates in
a yearly process supported by UNAIDS

• Fast inference is important to allow for
interactive review and development of estimates

• Inference for Naomi is currently conducted
using Template Model Builder (TMB)
(Kristensen et al. 2016) Figure 1: A supermodel

2

Figure 2: Example of the user interface from https://naomi.unaids.org/

3

Why do we use TMB

1. It runs quickly
2. It is flexible enough to be compatible with the model
3. We don’t have better viable options

4

What problem we are trying to solve

• Ideally we want exact Bayesian inference: compute the posterior
distribution of the parameters of the model given the data

• Computationally this amounts to solving a difficult integral
• We can’t solve this, but we can give approximate answers

Goal: approximate this integral for Naomi better than TMB does,
without taking too long. In doing so, more accurately reflect
uncertainty over hyperparameters

5

Two deterministic methods

• We use two deterministic1 methods to approximate our integral

1. The Laplace approximation
2. Quadrature

1In contrast to the most famous approximate Bayesian inference method, Markov chain Monte Carlo,
which is fundamentally stochastic.

6

The Laplace approximation

• If you pretend the posterior distribution is a Gaussian, computation is easy

7

Gamma(3, 1)

0.0

0.1

0.2

0.0 2.5 5.0 7.5 10.0

Figure 3: A Gamma prior with a = 3 and b = 1.

8

Gamma(3, 1)

Gamma(9, 4)

0.0

0.2

0.4

0.0 2.5 5.0 7.5 10.0

Figure 4: Draw 3 points from Poisson(3), then compute the posterior.

9

fn <- function(x) dgamma(x, a + sum(y), b + length(y), log = TRUE)

Here we are using numerical derivatives
ff <- list(

fn = fn,
gr = function(x) numDeriv::grad(fn, x),
he = function(x) numDeriv::hessian(fn, x)

)

opt_bfgs <- aghq::optimize_theta(
ff, 1, control = aghq::default_control(method = "BFGS")

)

10

Laplace approximation

laplace <- posterior +
stat_function(

data = data.frame(x = c(0, 10)),
aes(x),
fun = dnorm,
n = 500,
args = list(mean = opt_bfgs$mode, sd = sqrt(1 / opt_bfgs$hessian)),
col = cbpalette[3]

)

11

Laplace approximation

Gamma(3, 1)

Gamma(9, 4)

Laplace approximation

0.0

0.2

0.4

0.0 2.5 5.0 7.5 10.0

Figure 5: The Laplace approximation in this case is good near the mode but not in the tails.

12

Computation of the Laplace approximation

• This computation was simple, and involved

1. Optimising a function
2. Taking the mode and the Hessian at the mode

13

The marginal Laplace approximation

• If we don’t want to pretend the whole posterior distribution is Gaussian,
another option is to pretend some of its marginals are

• This is how TMB works: it’s up to the user to choose which parameters
should be Gaussian using the random option

14

Which parameters should we treat as Gaussian?

• In spatio-temporal statistics we have data indexed by space and time
• We use random effects also indexed by space and time to model this data
• Spatio-temporal fields can be big
• Willing to make assumptions about how things vary over spacetime

=⇒ treat the latent field parameters as Gaussian! That’s the
majority of the integral done.

15

What about the hyperparameters?

• TMB uses optimisation to find the hyperparameters which maximise the
marginal Laplace approximation

• This is the “outer” optimisation loop, where the “inner” is for computation
of the Gaussian distribution

Inference for the latent field is based on a single value of the
hyperparameters (the mode) – so called empirical Bayes =⇒ no
uncertainty in the hyperparameters taken into account! How can
you sleep at night.

16

Quadrature

• This brings us to our other method for solving integrals deterministically
• Say we have a function, then quadrature has two ingredients

1. Nodes: points to evaluate the function at
2. Weights: importance of function evaluation at that point
• You evaluate the function at the nodes, then do a weighted sum to

calculate your integral

17

Trapezoid rule example

• Let’s compute
∫ π
0 sin(x)dx = 2 using quadrature

trapezoid_rule <- function(x, spacing) {
Assumes nodes are evenly spaced
w <- rep(spacing, length(x)) # Weights given by space between nodes
w[1] <- w[1] / 2 # Apart from the first which is halved
w[length(x)] <- w[length(x)] / 2 # And the last, also halved
sum(w * x) # Compute the weighted sum

}

18

0.00

0.25

0.50

0.75

1.00

0 1 2 3
x

si
n(

x)
Number of nodes: 10
Trapezoid rule estimate: 1.98
Truth: 2

Figure 6: With 10 nodes it’s 0.02 off.

19

0.00

0.25

0.50

0.75

1.00

0 1 2 3
x

si
n(

x)
Number of nodes: 30
Trapezoid rule estimate: 1.998
Truth: 2

Figure 7: With 30 nodes it’s 0.002 off.

20

0.00

0.25

0.50

0.75

1.00

0 1 2 3
x

si
n(

x)
Number of nodes: 100
Trapezoid rule estimate: 2
Truth: 2

Figure 8: With 100 nodes it’s pretty much correct.

21

Adaptive Gauss-Hermite quadrature

• Gauss-Hermite quadrature is a method for picking nodes and weights based
on the theory of polynomial interpolation

• It works especially well for statistical problems where the integrand looks
like something multiplied by a Gaussian distribution

• The adaptive part means the nodes and weights are changed depending on
the integrand – this makes sense, especially when the integrand is also a
function of the data

• Implemented by the aghq package (Stringer 2021)

22

−2

0

2

4

−2 0 2 4

Weight

2.8

3.0

3.2

3.4

Figure 9: Unadapted points in two dimensions with k = 3.

23

−2

0

2

4

−2 0 2 4

Weight

2.8

3.0

3.2

3.4

Figure 10: Add the mean z + θ̂.

24

−2

0

2

4

−2 0 2 4

Weight

2.8

3.0

3.2

3.4

Figure 11: First option: rotate by the lower Cholesky Lz + θ̂.

25

−2

0

2

4

−2 0 2 4

Weight

2.8

3.0

3.2

3.4

Figure 12: Second option: rotate using the eigendecomposition EΛ1/2z + θ̂.

26

The plan?

• Write and implement an algorithm for
fast approximate Bayesian inference
using the Laplace approximation and
quadrature for the Naomi model

• Use TMB for writing the model in
C++, and implementing the Laplace
approximation via automatic
differentitation

• Use adaptive Gauss-Hermite quadrature
to integrate the hyperparameters

Figure 13: One of Canada’s top
engineering schools (though ungraded)

27

Long prophecised

My main comment is that several aspects of the computational ma-
chineery that is presented by Rue and his colleagues could benefit
from the use of a numerical technique known as automatic
differentiation (AD) . . . By the use of AD one could obtain a system
that is automatic from a user’s perspective. . . the benefit would be
a fast, flexible and easy-to-use system for doing Bayesian analysis in
models with Gaussian latent variables

– Hans J. Skaug (coauthor of TMB), RSS discussion of Rue, Martino, and
Chopin (2009)

28

One challenge

• For Malawi, Naomi has 24 hyperparameters: too many for a dense grid
• One proposed solution is to use principal components analysis (PCA) and

keep only the first s < 24 dimensions
• We will use k = 3 points per dimension (k = 2 doesn’t include the mode)

29

−2

0

2

4

−2 0 2 4

Weight

4.2

4.3

4.4

4.5

4.6

Figure 14: Illustration of what PCA-AGHQ looks like for the 2D example, keeping only the
first principal component, s = 1.

30

Figure 15: This Scree plot suggests 10 or so dimensions is enough. We use s = 8. Avoiding
long computation times is still important.

31

Figure 16: With 8 dimenions, the covariance matrix is accurately reproduced.

32

Comparison of posterior distributions

• We run HMC for as long as it takes to get a good answer (3 days)
• Compare output of TMB with aghq: which is more similar to HMC?

33

Figure 17: Histogram of sample draws from each method for one latent field parameter.
Which of TMB and aghq is closer to tmbstan? Hard to say.

34

Figure 18: The empirical cumulative distribution is slightly more enlightening.

35

Figure 19: The Kolmogorov-Smirnov test statistic is the maximum difference between ECDFs.

36

Figure 20: Generating the KS test statistic for all latent field parameters, on average aghq
does better.

37

Conclusions

• Developed an approximate Bayesian inference method more accurate than
TMB and faster than MCMC – we’re on the Pareto frontier!

• Scaled hyperparameter grid to >20 dimesions using PCA
• Relatively straightforward implementation using aghq R package,

compatible with any model that has a TMB template

38

Future work

• More comprehensive inference comparison, particularly of model outputs
• Maximum mean discrepancy
• Pareto-smoothed importance sampling
• Simulation-based calibration

• Extension to Laplace marginals via Wood (2020)
• May be more accurate, but have to think about computational costs

39

Thanks for listening!

• Working on a paper based on this work called “Fast approximate Bayesian
inference for small-area estimation of HIV indicators using the Naomi
model” joint with Alex Stringer (Waterloo), Seth Flaxman (Oxford), Jeff
Eaton (Imperial)

• Code and notebooks for this project are available at
athowes.github.io/elgm-inf

Let me know if you’d be up for being an early reader!

40

Risk group retrospective

Figure 21: Available at athowes.github.io

41

References I
Kristensen, Kasper, Anders Nielsen, Casper W Berg, Hans Skaug, and Bradley

M Bell. 2016. “TMB: Automatic Differentiation and Laplace
Approximation.” Journal of Statistical Software 70: 1–21.

Rue, Håvard, Sara Martino, and Nicolas Chopin. 2009. “Approximate Bayesian
inference for latent Gaussian models by using integrated nested Laplace
approximations.” Journal of the Royal Statistical Society: Series b
(Statistical Methodology) 71 (2): 319–92.

Stringer, Alex. 2021. “Implementing Approximate Bayesian Inference using
Adaptive Quadrature: the aghq Package.”
https://arxiv.org/abs/2101.04468.

Wood, Simon N. 2020. “Simplified Integrated Nested Laplace Approximation.”
Biometrika 107 (1): 223–30.

42

https://arxiv.org/abs/2101.04468

