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Figure 1: Ambitious targets required to end the AIDS epidemic as a public health threat by
2030.
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Figure 2: More effective intervention based on granular estimates of HIV indicators. One size
does not fit all!
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Figure 3: Generation of estimates by country teams strengthens data quality, use and
ownership. User interface from https://naomi.unaids.org/.



Want Strategy

Fast approximate Bayesian inference for 1. Marginal Laplace approximation

a complex, spatiotemporal, evidence 2. Adaptive Gauss-Hermite quadrature
synthesis model 3. Principal components analysis
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Figure 4: A Gamma prior with a=3 and b =1.
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Figure 5: Draw 3 points from Poisson(3), then compute the posterior.
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Figure 6: The Laplace approximation in this case is good near the mode but not in the tails.



For Malawi, the model has 491 parameters

467 have a joint Gaussian prior: call them the latent field x

24 are not Gaussian: call them hyperparameters 6

Use the Laplace approximation only for the latent field marginal posterior!



Geography Graph

Figure 7: Spatial random effects ¢; |¢_; ~ N (n% Zj;j~i¢j7 ﬁ) are included in the latent
field. We assume that neighbouring districts are similar: first law of geography.
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Figure 8: Unadapted Gauss-Hermite points in two dimensions with k = 3.
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Figure 9: Add the mean z + 0.
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Figure 10: First option: rotate by the lower Cholesky Lz + 6.
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Figure 11: Second option: rotate using the eigendecomposition EAY/2z + 0.



Weight

2
4.3
4.4
4.5

o
e o o

4.6

-2
-2 0 2 4

Figure 12: Now keeping only the first principal component, s = 1.
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Figure 13: Scree plot suggests 10 or so dimensions is enough
computation times.
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. We use s = 8 to avoid long
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Full rank Reduced rank

Figure 14: With 8 dimenions, the hyperparameter covariance matrix is accurately reproduced.
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Probability of greater than 81% ART coverage in strata
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Figure 15: Reduced RMSE by 10 percent, but still a work in progress! Also seeing small
improvements using Kolmogorov-Smirnov tests, Pareto-smoothed importance sampling,
maximum mean discrepancy.
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Thanks for listening!

® For more about Naomi, see Eaton et al. (2021)

e Joint work with Alex Stringer (Waterloo), Seth Flaxman (Oxford), and Jeff
Eaton (Harvard, Imperial)

® For more about me, see athowes.github.io/about

wicouser,  Imperial College $5%° ..
Disease Analysis  London \2;,2 & GLOBAL HEALTH NETWORK
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