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Figure 1: Ambitious targets required to end the AIDS epidemic as a public health threat by
2030.
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Figure 2: More effective intervention based on granular estimates of HIV indicators. One size
does not fit all!
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Figure 3: Generation of estimates by country teams strengthens data quality, use and
ownership. User interface from https://naomi.unaids.org/.
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Want
Fast approximate Bayesian inference for
a complex, spatiotemporal, evidence
synthesis model

Strategy
1. Marginal Laplace approximation
2. Adaptive Gauss-Hermite quadrature
3. Principal components analysis
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Gamma(3, 1) prior
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Figure 4: A Gamma prior with a = 3 and b = 1.
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Gamma(3, 1) prior

Gamma(9, 4) posterior (known)
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Figure 5: Draw 3 points from Poisson(3), then compute the posterior.
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Gamma(3, 1) prior

Gamma(9, 4) posterior (known)

Laplace approximation
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Figure 6: The Laplace approximation in this case is good near the mode but not in the tails.
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• For Malawi, the model has 491 parameters
• 467 have a joint Gaussian prior: call them the latent field x
• 24 are not Gaussian: call them hyperparameters θ
• Use the Laplace approximation only for the latent field marginal posterior!
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Geography Graph

Figure 7: Spatial random effects ϕi | ϕ−i ∼ N
(

1
nδi

∑
j:j∼i ϕj ,

1
nδi τϕ

)
are included in the latent

field. We assume that neighbouring districts are similar: first law of geography.
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Figure 8: Unadapted Gauss-Hermite points in two dimensions with k = 3.
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Figure 9: Add the mean z + θ̂.
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Figure 10: First option: rotate by the lower Cholesky Lz + θ̂.
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Figure 11: Second option: rotate using the eigendecomposition EΛ1/2z + θ̂.
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Figure 12: Now keeping only the first principal component, s = 1.
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Figure 13: Scree plot suggests 10 or so dimensions is enough. We use s = 8 to avoid long
computation times.
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Figure 14: With 8 dimenions, the hyperparameter covariance matrix is accurately reproduced.
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Figure 15: Reduced RMSE by 10 percent, but still a work in progress! Also seeing small
improvements using Kolmogorov-Smirnov tests, Pareto-smoothed importance sampling,
maximum mean discrepancy. 18



Thanks for listening!

• For more about Naomi, see Eaton et al. (2021)
• Joint work with Alex Stringer (Waterloo), Seth Flaxman (Oxford), and Jeff

Eaton (Harvard, Imperial)
• For more about me, see athowes.github.io/about
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