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S1 Simplified Naomi model description
In this section we describe the simplified Naomi model (Eaton et al. 2021) in complete detail.

S1.1 Background
S1.1.1 Indexing

Consider the most recent national household survey with HIV testing which has taken place in the country of
interest. Let x ∈ {1, . . . , n} be district, s ∈ {F,M} be sex, and a ∈ {0-5, 5-10, . . . , 75-80, 80+} be five-year
age groups. Each district is located within a correspodning Spectrum (Stover et al. 2010) region Rx. As
short-hand, we write a = l to refer to the age group with lower bound l, e.g. a = 20 for a = 20-25.

We index the known quantity population size Nx,s,a by district, sex and age-band, as well as the following
unknown quantities:

• HIV prevalence ρx,s,a ∈ [0, 1],
• ART coverage αx,s,a ∈ [0, 1],
• annual HIV incidence rate λx,s,a > 0, and
• proportion of HIV positive persons recently infected κx,s,a ∈ [0, 1].

Sometimes data are observed at an aggregate level, rather than the more granular modelled level. We use {·}
to generically refer to a aggregate set over which an observation is made, e.g. {a} = {15-19, . . . , 45-49} for
the adult age range 15-49. The notation

∑
{x} is used as shorthand for

∑
x∈{x}. Analogous notion is used for

sums over
∑
a∈{a} and

∑
s∈{s}.

S1.1.2 Structured random effects

We use structured random effects to enable partial pooling of information across units assessed as being
similar, such as those belonging to neighbouring districts or adjacent age groups. Let u be a generic random
effect, with length dim(u) > 1. Three types of structured random effects are used in the model:

1. We specify the first order auto-regressive model by u ∼ AR1(σ, ϕ) such that

u1 ∼
(

0, 1
1 − ρ2

)
, (1)

ui = ρui−1 + ϵi, i = 2, . . . ,dim(u), (2)

where ϵi ∼ N (0, 1) are independent and identically distributed (IID) Gaussian random variables, σ > 0
is the marginal standard deviation, and |ρ| < 1 is the (lag-one) correlation parameter.

2. We use u ∼ ICAR(σ) to refer to the Besag intrinsic conditional auto-regressive model (ICAR) (Besag,
York, and Mollié 1991) with full conditionals

ui | u−i ∼ N
(∑

j:j∼i uj

nδi
,
σ2

nδi

)
, (3)

where u−i is u with the ith element removed i.e. (u1, . . . , ui−1, ui+1, . . . , udim(u)), j ∼ i if the units i
and j are defined as adjacent, nδi = |{j : j ∼ i}| is the total number of adjacent units, and σ > 0 is
the marginal standard deviation. We follow recommendations of Freni-Sterrantino, Ventrucci, and Rue
(2018) on scaling of precision matrices, disconnected adjacency graph components, and islands.

3. For the reparameterised Besag-York-Mollie model [BYM2; Simpson et al. (2017)], we write u ∼
BYM2(σ, ϕ), where u is comprised of a spatially structured ICAR component v with proportion
ϕ ∈ (0, 1) and spatially unstructured IID component w with proportion 1 − ϕ, both scaled to have
generalised variance equal to one, and σ > 0 is the marginal standard deviation such that

u = σ
(√

ϕ · v +
√

1 − ϕ · w
)
. (4)
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S1.1.3 Complex survey design

We assume the household survey was run according to a complex survey design where each individual j in
the population U has non-zero probability πj ∈ (0, 1) of appearing in the sample S ⊆ U . Suppose we observe
an outcome θj ∈ {0, 1} for j ∈ S. Let wj = 1/πj × 1/ωj be design weights, where ωj is a non-response factor,
then a survey weighted mean is given by

θ̂ =
∑
j∈S wjθj∑
j∈S wj

. (5)

We account for survey weighting in the variance via the Kish effective sample size (Kish 1965)

mθ =

(∑
j∈S wj

)2

∑
j∈S w

2
j

. (6)

The observed number of indicator cases is then yθ = mθ · θ̂. To make these calculations we used the survey
R package (Lumley 2004)

S1.2 Process specification

Model component Latent field Hyperparameter
S1.2.1 HIV prevalence 22 + 5n 9
S1.2.2 ART coverage 25 + 5n 9
S1.2.3 HIV incidence rate 2 + n 3
S1.2.4 ANC testing 2 + 2n 2
S1.2.5 ART attendance n 1

Total 51 + 14n 24

Table S1: The numer of latent field parameters and hyperparameters in each model section.

We now describe the hyperparameter and latent field process specification for the model. Whereas in the
main text process and likelihood specifications are given together, here we consider the likelihood equations
separately (Section S1.3). Table S1 gives the number of latent field parameters and hyperparameters in
each component of the model. In the case of Malawi then n = 32 such that the total number of latent field
parameters is 51 + 14 · 32 = 499 and the total number of hyperparameters is 24.

S1.2.1 HIV prevalence

We model HIV prevalence ρx,s,a ∈ [0, 1] on the logit scale using the linear predictor

logit(ρx,s,a) = βρ0 + βρ,s=M
S + uρa + uρ,s=M

a + uρx + uρ,s=M
x + uρ,a<15

x + ηρRx,s,a
. (7)

Table S2 provides a description of the terms included in Equation 7.

The two BYM2 random effects uρx and uρ,s=M
x are comprised of the following unit scaled spatially structured

{vρx,vρ,s=M
x } and spatially unstructured {wρ

x,wρ,s=M
x } components, respectively

uρx = σρX

(√
ϕ
ρ

X · vρx +
√

1 − ϕρX · wρ
x

)
, (8)

uρ,s=M
x = σρXS

(√
ϕ
ρ

XS · vρ,s=M
x +

√
1 − ϕρXS · wρ,s=M

x

)
. (9)

We use half-normal priors for the standard deviation terms

{σρA, σ
ρ
AS , σ

ρ
X , σ

ρ
XS , σ

ρ
XA} ∼ N +(0, 2.5), (10)
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Term Distribution Description
βρ0 N (0, 5) Intercept
βρ,s=M
s N (0, 5) The difference in logit prevalence for men compared to women

uρa AR1(σρA, ϕ
ρ
A) Age random effects for women

uρ,s=M
a AR1(σρAS , ϕ

ρ
AS) Age random effects for the difference in logit prevalence for men compared

to women age a
uρx BYM2(σρX , ϕ

ρ
X) Spatial random effects for women

uρ,s=M
x BYM2(σρXS , ϕ

ρ
XS) Spatial random effects for the difference in logit prevalence for men compared

to women in district x
uρ,a<15
x ICAR(σρXA) Spatial random effects for the ratio of paediatric prevalence to adult women

prevalence
ηρRx,s,a

− Fixed offsets specifying assumed odds ratios for prevalence outside the age
ranges for which data are available

Table S2: Terms included in the linear predictor for HIV prevalence (Equation 7).

uniform priors for the AR1 correlation parameters

{ϕρA, ϕ
ρ
AS} ∼ U(−1, 1), (11)

and beta priors for the BYM2 proportion parameters

{ϕρX , ϕ
ρ
XS} ∼ Beta(0.5, 0.5). (12)

S1.2.2 ART coverage

We model ART coverage αx,s,a ∈ [0, 1] on the logit scale using the linear predictor

logit(αx,s,a) = βα0 + βα,s=M
S + uαa + uα,s=M

a + uαx + uα,s=M
x + uα,a<15

x + ηαRx,s,a (13)

with terms and priors analogous to the HIV prevalence process model in Section S1.2.1 above.

S1.2.3 HIV incidence rate

We model HIV incidence rate λx,s,a > 0 on the log scale using the linear predictor

log(λx,s,a) = βλ0 + βλ,s=M
S + log(ρ15-49

x ) + log(1 − ω · α15-49
x ) + uλx + ηλRx,s,a. (14)

Table S3 provides a description of the terms included in Equation 14.

We model the proportion recently infected among HIV positive persons κx,s,a ∈ [0, 1] as

κx,s,a = 1 − exp
(

−λx,s,a · 1 − ρx,s,a
ρx,s,a

· (ΩT − βT ) − βT

)
, (15)

where ΩT ∼ N (ΩT0 , σ
ΩT ) is the mean duration of recent infection, and βT ∼ N +(βT0 , σ

βT ) is the false recent
ratio. We use an informative prior for ΩT based on the characteristics of the recent infection testing algorithm.
For PHIA surveys this is ΩT0 = 130 days and σΩT = 6.12 days, and further there is assumed to be no false
recency, such that βT0 = 0.0 and σβT = 0.0.

S1.2.4 ANC testing

HIV prevalence ρANC
x,a and ART coverage αANC

x,a among pregnant women are modelled as being offset on the
logit scale from the corresponding district-age indicators ρx,F,a and αx,F,a according to

logit(ρANC
x,a ) = logit(ρx,F,a) + βρ

ANC
+ uρ

ANC

x + ηρ
ANC

Rx,a
, (16)

logit(αANC
x,a ) = logit(αx,F,a) + βα

ANC
+ uα

ANC

x + ηα
ANC

Rx,a . (17)
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Term Distribution Description
βλ0 N (0, 5) Intercept term proportional to the average HIV

transmission rate for untreated HIV positive
adults

βλ,s=M
S N (0, 5) The log incidence rate ratio for men compared

to women

ρ15-49
x =

∑
s∈{F,M}

∑45
a=15

Nx,s,a·ρx,s,a∑
s∈{F,M}

∑45
a=15

Nx,s,a

− The HIV prevalence among adults 15-49 cal-
culated by aggregating age-specific HIV preva-
lences

α15-49
x =

∑
s∈{F,M}

∑45
a=15

Nx,s,a·ρx,s,a·αx,s,a∑
s∈{F,M}

∑45
a=15

Nx,s,a·ρx,s,a

− The ART coverage among adults 15-49 calcu-
lated by aggregating age-specific ART cover-
ages

ω = 0.7 − Average reduction in HIV transmission rate
per increase in population ART coverage fixed
based on inputs to the Estimation and Projec-
tion Package (EPP) model

uλx N (0, σλ) IID spatial random effects with σλ ∼ N +(0, 1)
ηλRx,s,a

− Fixed log incidence rate ratios by sex and age
group calculated from Spectrum model output

Table S3: Terms included in the linear predictor for HIV incidence (Equation 14). Note that the only source
age structure for this part of the model are ηλRx,s,a

. As Spectrum assumes that there are no new infections in
children aged 5-9 or 10-14, or adults aged over 80, the posterior over new infections in these age groups is
exactly zero, by definition. We remove these identically zero posteriors from any later inference comparisons.

Term Distribution Description

βθ
ANC N (0, 5) Intercept giving the average difference between population and ANC outcomes

uθANC

x N (0, σθANC

X ) IID district random effects with σθ
ANC

X ∼ N +(0, 1)
ηθ

ANC

Rx,a
− Offsets for the log fertility rate ratios for HIV positive women compared to HIV

negative women and for women on ART to HIV positive women not on ART,
calculated from Spectrum model outputs for region Rx

Table S4: Terms included in the linear predictors for ANC testing, with θ ∈ {ρ, α} (Equation 7).

Table S4 provides a description of the terms included in Equation 16 and Equation 17.

In the full Naomi model, for adult women 15-49 the number of ANC clients Ψx,a > 0 are modelled as

log(Ψx,a) = log(Nx,F,a) + ψRx,a + βψ + uψx ,

where Nx,F,a are the female population sizes, ψRx,a are fixed age-sex fertility ratios in Spectrum region Rx,
βψ are log rate ratios for the number of ANC clients relative to the predicted fertility, and uψx ∼ N (0, σψ)
are district random effects. Here we fix βψ = 0 and uψx = 0 such that Ψx,a are simply constants.

S1.2.5 ART attendance

Let γx,x′ ∈ [0, 1] be the probability that a person on ART residing in district x receives ART in district
x′. We assume that γx,x′ = 0 for x /∈ {x, ne(x)} such that individuals seek treatment only in their residing
district or its neighbours ne(x) = {x′ : x′ ∼ x}, where ∼ is an adjacency relation, and

∑
x′∈{x,ne(x)} γx,x′ = 1.

To model γx,x′ for x ∼ x′ we use a multinomial logistic regression model, based on the log-odds ratios

γ̃x,x′ = log
(

γx,x′

1 − γx,x′

)
= γ̃0 + uγ̃x, (18)
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where γ̃0 = −4 is a fixed intercept, and uγ̃x ∼ N (0, σγ̃X) are district random effects with σγ̃X ∼ N +(0, 2.5).
Note that Equation 18 does not depend on x′, such that γx,x′ is only a function of x. Choice of γ̃0 = −4
implies a prior mean on γx,x′ of 1.8%, such that (100 − 1.8 × ne(x))% of ART clients in district x obtain
treatment in their home district, a-priori. We fix γ̃x,x = 0 and recover the multinomial probabilities using the
softmax

γx,x′ = exp(γ̃x,x′)∑
x⋆∈{x,ne(x)} exp(γ̃x,x⋆) . (19)

Given the total number of PLHIV on ART Ax,s,a = Nx,s,a · ρx,s,a · αx,s,a, the number of ART clients who
reside in district x and obtain ART in district x′ are Ax,x′,s,a = Ax,s,a · γx,x′ , and the total attending ART
facilities in district x′ are

Ãx′,s,a =
∑

x∈{x′,ne(x′)}

Ax,x′,s,a. (20)

S1.3 Likelihood specification
S1.3.1 Household survey data

For HIV prevalence, ART coverage and recent HIV infections, denoted by θ ∈ {ρ, α, κ}, the most recent
household survey furnishes weighted observations θ̂{x},{s},{a} with respective Kish effective sample sizes
mθ

{x},{s},{a} ∈ R, and observed number of cases

yθ{x},{s},{a} = mθ
{x},{s},{a} · θ̂{x},{s},{a} ∈ R. (21)

To model these observations, we use the following three binomial working likelihoods:

1. The number of people living with HIV (PLHIV) is

yρ{x},{s},{a} ∼ xBin(mρ
{x},{s},{a}, ρ{x},{s},{a}), (22)

where
ρ{x},{s},{a} =

∑
{x}

∑
{s}

∑
{a} Nx,s,a · ρx,s,a∑

{x}
∑

{s}
∑

{a} Nx,s,a
(23)

has denominator given by the total population size.
2. The number of PLHIV on ART is

yα{x},{s},{a} ∼ xBin(mα
{x},{s},{a}, α{x},{s},{a}), (24)

where
α{x},{s},{a} =

∑
{x}

∑
{s}

∑
{a} Nx,s,a · ρx,s,a · αx,s,a∑

{x}
∑

{s}
∑

{a} Nx,s,a · ρx,s,a
(25)

has denominator given by the total PLHIV.
3. The number of PLHIV recently infected

yκ{x},{s},{a} ∼ xBin(mκ
{x},{s},{a}, κ{x},{s},{a}), (26)

where
κ{x},{s},{a} =

∑
{x}

∑
{s}

∑
{a} Nx,s,a · ρx,s,a · κx,s,a∑

{x}
∑

{s}
∑

{a} Nx,s,a · ρx,s,a
(27)

has denominator given by the total PLHIV.

The generalised binomial y ∼ xBin(m, p) used above is defined for y,m ∈ R+ with y ≤ m such that

log p(y) = log Γ(m+ 1) − log Γ(y + 1) − log Γ(m− y + 1) + y log p+ (m− y) log(1 − p), (28)

where the gamma function Γ is such that ∀n ∈ N, Γ(n) = (n− 1)!.
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S1.3.2 ANC testing data

We include ANC testing data for the year of the most recent survey. Let WANC
{x} be the number of ANC

clients, XANC
{x} the number of those with ascertained status, Y ANC

{x} the number of those with positive status
(either known or tested) and ZANC

{x} the number of ANC clients already on ART prior to first ANC, such that

WANC
x ≥ XANC

x ≥ Y ANC
x ≥ ZANC

x , (29)

for all x ∈ {x}. When ANC testing data are only available for part of a given year, we denote mANC ∈
{1, . . . , 12} the number of months of reported data reflected in counts for that year. The observed number of
HIV positive and already on ART among ANC clients is modelled by

Y ANC
{x} ∼ Bin

(
XANC

{x} , ρANC
{x},{15,...45}

)
, (30)

ZANC
{x} ∼ Bin

(
Y ANC

{x} , αANC
{x},{15,...45}

)
, (31)

where prevalence and ART coverage are aggregated by the number of pregnant women Ψx,a

ρANC
{x}{a} =

∑
{x}

∑
{a} Ψx,a · ρANC

x,a∑
{x}

∑
{a} Ψx,a

, (32)

αANC
{x}{a} =

∑
{x}

∑
{a} Ψx,a · ρANC

x,a · αANC
x,a∑

{x}
∑

{a} Ψx,a · ρANC
x,a

. (33)

S1.3.3 Number receiving ART

Let Ȧ{x},{s},{a} be data for the number receiving ART

Ȧ{x},{s},{a} =
∑
{x}

∑
{s}

∑
{a}

∑
x∼x′,x=x′

Ȧx′,x,s,a.

We model the unobserved numbers of ART clients travelling from x′ to x as

Ȧx′,x,s,a ∼ Bin(Nx′,s,a, πx′,x,s,a)

where πx′,x,s,a = ρx′,s,a · αx′,s,a · γx′,x,s,a. This likelihood is approximated using a normal for the sum of
binomials by

Ȧ{x},{s},{a} ∼ N (Ã{x},{s},{a}, σ
Ã
{x},{s},{a})

where the mean is
Ã{x},{s}{a} =

∑
{x}

∑
{s}

∑
{a}

∑
x∼x′,x=x′

Nx′,s,a · πx′,x,s,a,

and the variance is(
σÃ{x},{s}{a}

)2
=

∑
{x}

∑
{s}

∑
{a}

∑
x∼x′,x=x′

Nx′,s,a · πx′,x,s,a · (1 − πx′,x,s,a) .

S1.4 Identifiability constaints
If data are missing, some parameters are fixed to default values to help with identifiability. In particular:

1. If survey data on HIV prevalence or ART coverage by age and sex are not available then we set uθa = 0
and uθa,s=M = 0 and use the average age-sex pattern of from the Spectrum offset ηθRx,s,a

. For the Malawi
example considered in the main text HIV prevalence and ART coverage data are not available for those
aged 65+. As a result, there are |{0-4, . . . , 50-54}| = 13 age groups included for the age random effects.
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2. If no ART data, either survey or ART programme, are available but data on ART coverage among ANC
clients are available, the level of ART coverage is not identifiable, but spatial variation is identifiable.
In this instance, overall ART coverage is determined by the Spectrum offset, and only area random
effects are estimated such that logit (αx,s,a) = uαx + ηαRx,s,a

.
3. If survey data on recent HIV infection are not included in the model, then βλ0 = βλ,s=M

S = 0 and
uλx = 0. The sex ratio for HIV incidence is determined by the sex incidence rate ratio from Spectrum
in the same years and the incidence rate in all districts is modelled assuming the same average HIV
transmission rate for untreated adults, but varies according to district estimates of HIV prevalence and
ART coverage.

ρx,s,a αx,s,a λx,s,a κx,s,a

Figure S1: Directed acyclic graph describing the simplified Naomi model (work in progress).

S1.5 Implementation
The C++ TMB code for the negative log-posterior of the simplified Naomi model is available from the GitHub
repository athowes/naomi-aghq. For ease of understanding, Table S5 provides correspondence between the
mathematical notation used in Section S1 and the variable names used in the TMB code, for all hyperparameters
and latent field parameters. For further reference on the TMB software see Kristensen (2021).
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Variable name Notation Type Size Domain ρ input? α input? λ input?
logit_phi_rho_x logit(ϕρX) Hyper 1 R ✓
log_sigma_rho_x log(σρX) Hyper 1 R ✓
logit_phi_rho_xs logit(ϕρXS) Hyper 1 R ✓
log_sigma_rho_xs log(σρXS) Hyper 1 R ✓
logit_phi_rho_a logit(ϕρA) Hyper 1 R ✓
log_sigma_rho_a log(σρA) Hyper 1 R ✓
logit_phi_rho_as logit(ϕρAS) Hyper 1 R ✓
log_sigma_rho_as log(σρAS) Hyper 1 R ✓
log_sigma_rho_xa log(σρXA) Hyper 1 R ✓
logit_phi_alpha_x logit(ϕαX) Hyper 1 R ✓
log_sigma_alpha_x log(σαX) Hyper 1 R ✓
logit_phi_alpha_xs logit(ϕαXS) Hyper 1 R ✓
log_sigma_alpha_xs log(σαXS) Hyper 1 R ✓
logit_phi_alpha_a logit(ϕαA) Hyper 1 R ✓
log_sigma_alpha_a log(σαA) Hyper 1 R ✓
logit_phi_alpha_as logit(ϕαAS) Hyper 1 R ✓
log_sigma_alpha_as log(σαAS) Hyper 1 R ✓
log_sigma_alpha_xa log(σαXA) Hyper 1 R ✓
OmegaT_raw ΩT Hyper 1 R ✓
log_betaT log(βT ) Hyper 1 R ✓

log_sigma_lambda_x log(σλ) Hyper 1 R ✓

log_sigma_ancrho_x log(σρ
ANC

X ) Hyper 1 R
log_sigma_ancalpha_x log(σαANC

X ) Hyper 1 R
log_sigma_or_gamma log(σγ̃X) Hyper 1 R
beta_rho (βρ0 , βρ,s=M

s ) Latent 2 R2 ✓

beta_alpha (βα0 , β
α,s=M
S ) Latent 2 R2 ✓

beta_lambda (βλ0 , β
λ,s=M
S ) Latent 2 R2 ✓

beta_anc_rho βρ
ANC Latent 1 R

beta_anc_alpha βα
ANC Latent 1 R

u_rho_x wρ
x Latent n Rn ✓

us_rho_x vρx Latent n Rn ✓

u_rho_xs wρ,s=M
x Latent n Rn ✓

us_rho_xs vρ,s=M
x Latent n Rn ✓

u_rho_a uρa Latent 10 R10 ✓

u_rho_as uρ,s=M
a Latent 10 R10 ✓

u_rho_xa uρ,a<15
x Latent n Rn ✓

u_alpha_x wα
x Latent n Rn ✓

us_alpha_x vαx Latent n Rn ✓

u_alpha_xs wα,s=M
x Latent n Rn ✓

us_alpha_xs vα,s=M
x Latent n Rn ✓

u_alpha_a uαa Latent 13 R13 ✓

u_alpha_as uα,s=M
a Latent 10 R10 ✓

u_alpha_xa uα,a<15
x Latent n Rn ✓

ui_lambda_x uλx Latent n Rn ✓

ui_anc_rho_x uρANC

x Latent n Rn

ui_anc_alpha_x uαANC

x Latent n Rn
log_or_gamma uγ̃x Latent n Rn

Table S5: Correspondence between mathematical notation and variable names used in our TMB code. The
total number of hyperparameters is 24, and the total number of latent field parameters is 51 + 14n, where
n is the number of districts. We use the notation ✓ to refer to direct dependence of the parameter on the
variable, ✗ to refer to no dependence, and a blank entry to refer to dependence conditional on the data.
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S2 Model assessment
S2.1 Additional figures

Figure S2: A posterior contraction of 1 corresponds to a Dirac delta function. A posterior contraction of 0
corresponds to no change in standard deviation between prior and posterior. A posterior contraction less
than 0 corresponds to a wider posterior than prior.
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Figure S3: Most variation in the inverse curvature could be explained using far fewer than the full 24
dimensions.

Figure S4: The reduced rank (s = 8) matrix approximation to the covariance matrix is visually similar to the
full rank original.

S3 AGHQ and PCA-AGHQ details
S3.1 Additional figures
S3.2 Normalising constant estimation
Add here plots and description of the estimated normalising constant for different PCA-AGHQ settings.
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Figure S5: Standard deviations of the quantiles of the quadrature nodes within the NUTS posterior draws
varied substantially, in accordance with the marginal standard deviations shown in Figure S6.

Figure S6: Hyperparameters on the logit-scale had systematically higher marginal standard deviations than
those on the log-scale. This is because variation on the real scale is compressed by the inverse logit and
expanded by the inverse log (exponential).
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Figure S7: Principal component loadings based on the eigendecomposition of the inverse curvature.
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S4 Inference comparison
In this section we give more detailed inference comparison results for each parameter or group of parameters.
For any parameter with length greater than one, the results presented are an average.

S4.1 Point estimates
S4.1.1 Posterior mean

Parameter TMB PCA-AGHQ Difference Percent Difference
Output
alpha_t1_out 0.0080 0.0063 −0.0018 −21.9%
lambda_t1_out 0.00035 0.00033 −0.000020 −5.6%
rho_t1_out 0.0012 0.0012 −0.000017 −1.4%
Latent
beta_alpha 0.071 0.077 0.0057 8.0%
beta_anc_alpha 0.012 0.0096 −0.0028 −22.9%
beta_anc_rho 0.0097 0.013 0.0031 32.1%
beta_lambda 0.083 0.071 −0.012 −14.5%
beta_rho 0.19 0.17 −0.021 −10.9%
log_or_gamma 0.078 0.074 −0.0046 −5.9%
u_alpha_a 0.026 0.067 0.041 160.0%
u_alpha_as 0.086 0.070 −0.016 −18.9%
u_alpha_x 0.019 0.014 −0.0047 −24.7%
u_alpha_xa 0.018 0.016 −0.0020 −11.0%
u_alpha_xs 0.020 0.015 −0.0048 −24.1%
u_rho_a 0.26 0.19 −0.068 −26.1%
u_rho_as 0.089 0.16 0.068 76.6%
u_rho_x 0.018 0.017 −0.0011 −5.7%
u_rho_xs 0.019 0.016 −0.0034 −17.7%
ui_anc_alpha_x 0.013 0.012 −0.0011 −8.5%
ui_anc_rho_x 0.011 0.011 −0.00018 −1.6%
ui_lambda_x 0.015 0.020 0.0048 31.5%
us_alpha_x 0.14 0.10 −0.043 −30.1%
us_alpha_xs 0.15 0.092 −0.061 −40.1%
us_rho_x 0.065 0.064 −0.00072 −1.1%
us_rho_xs 0.056 0.050 −0.0060 −10.7%

S4.1.2 Posterior standard deviation

Parameter TMB PCA-AGHQ Difference Percent Difference
Output
alpha_t1_out 0.0032 0.0035 0.00031 9.8%
lambda_t1_out 0.00016 0.00018 0.000022 14.0%
rho_t1_out 0.00047 0.00044 −0.000031 −6.7%
Latent
beta_alpha 0.42 0.094 −0.32 −77.5%
beta_anc_alpha 0.0066 0.0080 0.0014 20.9%
beta_anc_rho 0.0014 0.0013 −0.00014 −10.0%
beta_lambda 0.021 0.025 0.0040 19.0%
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beta_rho 0.42 0.14 −0.28 −67.1%
log_or_gamma 0.023 0.027 0.0034 14.6%
u_alpha_a 0.42 0.049 −0.37 −88.4%
u_alpha_as 0.40 0.12 −0.28 −71.1%
u_alpha_x 0.0098 0.010 0.00025 2.6%
u_alpha_xa 0.0082 0.0085 0.00034 4.2%
u_alpha_xs 0.024 0.023 −0.00078 −3.2%
u_rho_a 0.44 0.11 −0.33 −74.7%
u_rho_as 0.39 0.16 −0.23 −59.9%
u_rho_x 0.0069 0.0064 −0.00046 −6.7%
u_rho_xs 0.013 0.010 −0.0028 −21.6%
ui_anc_alpha_x 0.024 0.023 −0.00017 −0.7%
ui_anc_rho_x 0.0069 0.0076 0.00077 11.2%
ui_lambda_x 0.055 0.053 −0.0014 −2.6%
us_alpha_x 0.12 0.075 −0.041 −35.3%
us_alpha_xs 0.12 0.056 −0.069 −55.3%
us_rho_x 0.055 0.056 0.0012 2.2%
us_rho_xs 0.045 0.042 −0.0034 −7.4%

S4.2 Distribution tests
S4.2.1 Kolmogorov-Smirnov

Parameter TMB PCA-AGHQ Difference
beta_alpha 0.093 0.077 −0.016
beta_lambda 0.070 0.096 0.026
beta_rho 0.069 0.073 0.004
log_or_gamma 0.056 0.055 −0.001
u_alpha_a 0.055 0.058 0.003
u_alpha_as 0.103 0.083 −0.020
u_alpha_x 0.117 0.118 0.001
u_alpha_xa 0.069 0.069 0.000
u_alpha_xs 0.092 0.081 −0.011
u_rho_a 0.070 0.082 0.012
u_rho_as 0.071 0.065 −0.006
u_rho_x 0.069 0.070 0.001
u_rho_xs 0.150 0.150 0.000
ui_anc_alpha_x 0.076 0.074 −0.001
ui_anc_rho_x 0.056 0.055 −0.001
ui_lambda_x 0.114 0.045 −0.069
us_alpha_x 0.088 0.085 −0.004
us_alpha_xs 0.094 0.078 −0.016
us_rho_x 0.084 0.080 −0.005
us_rho_xs 0.041 0.044 0.003

Average — 0.082 0.077 −0.005

S4.3 Pareto-smoothed importance sampling
S4.4 Maximum mean discrepancy
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S5 MCMC convergence and suitability
We assessed MCMC convergence and suitability using a range of graphical and numerical tests. The largest
scale reduction factor R̂ was 1.02 (Figure S8). As such, all values of R̂ < 1.05. Even thinning by a factor
of 20, samples were not obtained very efficiently, resulting in the majority of effective sample size (ESS)
ratios being below 0.5, with some as low as 0.1 (Figure S9). As a result, the number of obtained ESS varied
substantially by parameter (Figure S10): the minimum was 208.1, 2.5% quantile was 318.2, median was 1231,
97.5% quantile was 2776.3 and maximum was 4250.7. Traceplots for the parameters with the lowest ESS
(log_sigma_alpha_xs) and highest R̂ (the 10th index of ui_lambda_x) are shown in Figure S11. There were
no divergent transitions.

Figure S8: The potential scale reduction factor compares between- and within- estimates of univariate
parameters. It is recommended only to use NUTS results if the value is less than 1.05, which it is for all
parameters.

Figure S9: The efficiently, as measured by the ESS ratio, of the NUTS sampler was poor.
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Figure S10: The effective number of samples we obtained varied substantially between parameters.

Figure S11: Traceplots of the parameters with the lowest ESS and highest scale reduction factor.
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Figure S12: Variation between units can be explained either by high correlation and high variance, or by
low correlation and low variance. As such, the AR1 hyperparameters had correlated posteriors. It is this
correlation which we made use of with PCA-AGHQ.
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Figure S13: In contrast to the AR1 hyperparameters, the BYM2 hyperparameter posteriors are much less
correlated.
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Figure S14: The ESS was negatively correlated with KS test statistic for both TMB and PCA-AGHQ. This
could be explained in two ways. First, harder to sample parameters could be more difficult to estimate with
approximate methods. Second, as more effective samples are collected, the NUTS posterior could become
closer to the approximate posteriors.
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S6 Algorithm using Laplace latent field marginals
1. Calculate the mode, Hessian at the mode, lower Cholesky, and Laplace approximation

θ̂ = arg max
θ

p̃LA(θ,y), (34)

Ĥ = − ∂2

∂θ∂θ⊤ log p̃LA(θ,y)|θ=θ̂, (35)

Ĥ−1 = L̂L̂⊤, (36)

p̃LA(θ,y) = p(y,x,θ)
p̃G(x | θ,y)

∣∣∣
x=x̂(θ)

, (37)

where p̃G(x | θ,y) = N (x | x̂(θ), Ĥ(θ)−1) is a Gaussian approximation to p(x | θ,y) with mode and
precision matrix given by

x̂(θ) = arg max
x

log p(y,x,θ), (38)

Ĥ(θ) = − ∂2

∂x∂x⊤ log p(y,x,θ)|x=x̂(θ). (39)

2. Generate a set of nodes u ∈ Q(m, k) and weights ω : u → R from a Gauss-Hermite quadrature rule with
k nodes per dimension. Adapt these nodes based on the mode and lower Choleksy via θ(u) = θ̂ + Lu.
Use this quadrature rule to calculate the normalising constant p̃AQ(y) as follows

p̃AQ(y) =
∑

u∈Q(m,k)

p̃LA(θ(u),y)ω(u). (40)

3. For i ∈ [N ] generate l nodes xi(v) via a Gauss-Hermite quadrature rule v ∈ Q(1, l) adapted based on
the mode x̂(θ)i and standard deviation

√
diag[Ĥ(θ)−1]i of the Gaussian marginal. A value of l ≥ 4

is recommended to enable B-spline interpolation. For xi ∈ {xi(v)}v∈Q(1,l) and θ ∈ {θ(u)}u∈Q(m,k)
calculate the modes and Hessians

x̂−i(xi,θ) = arg max
x−i

log p(y, xi,x−i,θ), (41)

Ĥ−i,−i(xi,θ) = − ∂2

∂x−i∂x⊤
−i

log p(y, xi,x−i,θ)|x−i=x̂−i(xi,θ), (42)

where optimisation to obtain x̂−i(xi,θ) can be initialised at x̂(θ)−i.

4. For xi ∈ {xi(v)}v∈Q(1,l) calculate
(43)

where
p̃LA(xi,y) =

∑
u∈Q(m,k)

p̃LA(xi,θ(u),y)ω(u).

and
p̃LA(xi,θ,y) = p(xi,x−i,θ,y)

p̃G(x−i |xi,θ,y)

∣∣∣
x−i=x̂−i(xi,θ)

.

Although Equation ?? can be calculated using the estimate of the evidence given in Equation 40 it is
more numerically accurate, and requires little extra computation, to use the estimate

p̃AQ(y) =
∑

v∈Q(1,l)

p̃LA(xi(v),y)ω(v)

5. Given {xi(v), p̃AQ(xi(v) | y)}v∈Q(1,l) create a spline interpolant to each posterior marginal on the log-
scale. Samples, and thereby relevant posterior marginal summaries, may be obtained using inverse
transform sampling.
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