
Summary

Approximate Bayesian inference method using Laplace
approximations and adaptive Gauss-Hermite quadrature
Motivated by an evidence synthesis model for small-area
estimation of HIV indicators in sub-Saharan Africa
Looking to implement as a part of the aghq  package
(Stringer 2021), allowing �exible use of the method for
any model with a TMB  C++ user template

The Naomi HIV model

District-level model of HIV indicators (Eaton et al. 2021)
which synthesises data from household surveys,
antenatal care (ANC) clinics, and routine service provision
of antiretroviral therapy (ART)

Combining evidence from multiple data sources helps
overcome the limitations of any one
Small-area estimation methods to overcome small
district-level sample sizes

Yearly estimation process: model run interactively by
country teams using a web-app naomi.unaids.org

Figure 1 illustrates the seven stages of using the app
Inference conducted in minutes using empirical Bayes
(EB) and a Gaussian approximation via Template Model
Builder TMB  (Kristensen et al. 2016)
It would take days to get accurate answers with MCMC via
tmbstan  (Monnahan and Kristensen 2018), and this is
not practical in this setting
Motivates looking for a fast, approximate approach, that
takes uncertainty in hyperparameters into account

Figure 1: Model �tting occurs interactively in stages.

Extended latent Gaussian models

Latent Gaussian models (LGMs) (Rue, Martino, and
Chopin 2009) are three stage hierarchical models with
observations , Gaussian latent �eld  and
hyperparameters 
In an LGM the conditional mean depends on exactly one
structured additive predictor  with 

The R-INLA  implementation of integrated nested
Laplace approximations applies only to LGMs, because
ELGM precision matrices are not as sparse

Extended latent Gaussian models (ELGM) remove this
requirement such that  where 
and  is some set of indices

Allows a higher degree of non-linearity in the model
Naomi is an ELGM, not an LGM, because it includes
complex dependency structures:
1. ANC indicators o�set from household survey
2. Incidence depends on prevalence and ART coverage
3. Observed data are aggregated �ner processes
4. Allow attendance of ART clinics outside home district
5. ART attendance probability as product of prevalence

and coverage
We extend work of Stringer, Brown, and Sta�ord (2022) in
this setting to the challenging Naomi ELGM
Though we focus on Naomi here, the HIV Inference
Group (hiv-inference.org ) works on many other
complex models, challenging for existing Bayesian
inference methods, which require �exible modelling tools

Inference procedure

Laplace approximation Integrate out variables using a
Gaussian approximation to the denominator

where 
Use automatic di�erentiation via CppAD  in TMB

Adaptive Gauss-Hermite Quadrature

where the Gauss-Hermite quadrature rule
 with  points per dimension is

adapted based upon
The mode 
The lower Cholesky 

Algorithm (called adam  for now) summarized by Figure 2
Where possible, previously calculated quantities and
quadrature rules are reused

Figure 2: Flowchart describing the algorithm

Application to Malawi data

Figure 3: District-level model outputs for adults 15-49 in
January 2016. Adapted from Eaton et al. 2021.

Relatively small country but still a large model: latent �eld
, hyperparameters 

Fit four inference methods (using one [!] C++ template):
TMB  (3 mins)
aghq  (1 mins): 
adam  (27 min): 
tmbstan  (2.4 days): 4 chains of 100,000 thinned by 40
(required for good diagnostics)

Figure 3 illustrates example model outputs: HIV
prevalence, ART coverage, HIV incidence, and number of
new infections, at the district level

Figure 4: Inference reults and ECDF comparison for one .

Compare hyperparameter, latent �eld, and output
posterior marginals based on maximum ECDF di�erence
(Kolmogorov-Smirnov test)
Figure 4 illustrates this approach for one node in the
model with  and 

Future directions

Scaling up the hyperparameter grid beyond EB 
Any dense grid would be impractical (  nodes)
Alternatives: sparse grids, dense grids on a subspace

Add Laplace matrix algebra approximations (Wood 2020)
to speed up latent �eld marginal calculations
More comprehensive inference comparison

Maximum mean discrepancy
Pareto-smoothed importance sampling

Interested? Working notebooks and R code available from
github.com/athowes/elgm-inf . Or get in touch:

 athowes.github.io
 ath19@ic.ac.uk
 adamhowes

Funding AH was supported by the EPSRC and Bill &
Melinda Gates Foundation. This research was supported
by the MRC Centre for Global Infectious Disease Analysis.

References
Eaton, Je�rey W., Laura Dwyer-Lindgren, Steve Gutreuter, Megan O’Driscoll, Oliver
Stevens, Sumali Bajaj, Rob Ashton, et al. 2021. “Naomi: A New Modelling Tool for
Estimating HIV Epidemic Indicators at the District Level in Sub-Saharan Africa.” Journal of
the International AIDS Society 24 (S5): e25788.
Kristensen, Kasper, Anders Nielsen, Casper W Berg, Hans Skaug, Bradley M Bell, et al.
2016. “TMB: Automatic Di�erentiation and Laplace Approximation.” Journal of Statistical
Software 70 (i05).
Monnahan, Cole C, and Kasper Kristensen. 2018. “No-U-turn sampling for fast Bayesian
inference in ADMB and TMB: Introducing the adnuts and tmbstan R packages.” PloS One
13 (5): e0197954.
Rue, Håvard, Sara Martino, and Nicolas Chopin. 2009. “Approximate Bayesian inference
for latent Gaussian models by using integrated nested Laplace approximations.” Journal of
the Royal Statistical Society: Series B (Statistical Methodology) 71 (2): 319–92.
Stringer, Alex. 2021. “Implementing Approximate Bayesian Inference Using Adaptive
Quadrature: The Aghq Package.” arXiv Preprint arXiv:2101.04468.
Stringer, Alex, Patrick Brown, and Jamie Sta�ord. 2022. “Fast, Scalable Approximations to
Posterior Distributions in Extended Latent Gaussian Models.” Journal of Computational
and Graphical Statistics, 1–15.
Wood, Simon N. 2020. “Simpli�ed integrated nested Laplace approximation.” Biometrika
107 (1): 223–30.

Fast approximate Bayesian inference for small-area
estimation of HIV indicators using the Naomi model

Adam Howes1, 2, Alex Stringer3, Seth R. Flaxman4, Je�rey W. Eaton2

1 Department of Mathematics, Imperial College London
2 MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London

3 Department of Statistics and Actuarial Science, University of Waterloo
4 Department of Computer Science, University of Oxford

y x
θ

μi = g(ηi) g : R → R

μi = g(ηJi
) gi : R|Ji| → R

Ji

p(θ, y) ≈ ~pLA(θ, y) = ∣
∣x=x̂(θ)

p(y, x, θ)
~pG(x | θ, y)

~pG(x | θ, y) = N (x | x̂(θ), H(θ)−1)

∫
Θ

p(θ)dθ ≈ |L| ∑
z∈Q(m,k)

p(θ̂ + Lz)ω(z)

z ∈ Q(dim(θ), k) k

θ̂ = argmaxθ∈Θp(θ)
LL⊤ = −∂2

θ
log p(θ)|

θ=θ̂

dim(x) = 491 dim(θ) = 24

k = 1
k = 1

xi

KS(TMB) = 0.09 KS(adam) = 0.02

k = 1
k24




