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Naomi is a spatial evidence synthesis model used to produce district-
level HIV epidemic indicators in sub-Saharan Africa. Multiple outcomes of
policy interest, including HIV prevalence, HIV incidence, and antiretroviral
therapy treatment coverage are jointly modelled using both household sur-
vey data and routinely reported health system data. The model is provided
as a tool for countries to input their data to and generate estimates with dur-
ing a yearly process supported by UNAIDS. Inference has previously been
conducted using empirical Bayes and a Gaussian approximation via the TMB
R package. We propose a new inference method based on an extension of
adaptive Gauss-Hermite quadrature to deal with >20 hyperparameters. Using
data from Malawi, our method improves the accuracy of inferences for model
parameters, while being substantially faster to run than Hamiltonian Monte
Carlo with the No-U-Turn sampler. However, for model ouptuts, we found
the simpler empirical Bayes approach to achieve similar performance. Our
implementation is based on the existing TMB C++ template for the model’s
log-posterior, and is compatible with any model with such a template.

1. Introduction. Accurate estimates of HIV indicators are crucial for mounting an ef-
fective public health response to the HIV epidemic. These estimates should be timely, and
at a geographic level at which health systems are planned and delivered. Producing granular
estimates is challenging, in large part due to limitations of the data from available sources.
Nationally-representative household surveys provide the most statistically reliable data, but
are costly to run and so only conducted every five years or so in most countries, with lim-
ited sample size at the district level. Other data sources, such as routine health surveillance
of antenatal care (ANC) clinics, are available in closer to real-time, but are not representa-
tive of the entire population. To address these challenges, the Naomi small-area estimation
model (Eaton et al., 2021) synthesises data from multiple sources to estimate HIV indicators
at a district-level, by age and sex. Modelling multiple data sources jointly mitigates the lim-
itations of any single source, increases statistical power, and can prompt investigation into
conflicts of information.

Software has been developed for Naomi (https://naomi.unaids.org), allowing
over 35 countries to input their data and interactively generate estimates during workshops
as a part of a yearly process supported by UNAIDS. Creation of estimates by country teams,
rather than external agencies or researchers, is an important and distinctive feature of the HIV

Keywords and phrases: Bayesian statistics, spatial statistics, evidence synthesis, small-area estimation, ap-
proximate inference, INLA, AGHQ, HIV epidemiology.

1

https://imstat.org/journals-and-publications/annals-of-applied-statistics/
mailto:ath19@ic.ac.uk
mailto:alex.stringer@uwaterloo.ca
mailto:seth.flaxman@cs.ox.ac.uk
mailto:jeaton@hsph.harvard.edu
https://naomi.unaids.org


2

response. Drawing on expertise closest to the data being modelled improves the accuracy of
the process, as well as strengthening trust in the resulting estimates, creating a virtuous cycle
of data quality, use and ownership (Noor, 2022).

Naomi is a complex model, comprised of multiple linked generalized linear mixed models
(GLMMs), and presents a challenging Bayesian inference problem. As well as hundreds of
fixed and random effect parameters, Naomi has >20 hyperparameters: substantially more than
the small number that can typically be handled by approaches like integrated nested Laplace
approximations [INLA; Rue, Martino and Chopin (2009)]. Moreover, observations depend
on multiple structured additive predictors, such that Naomi falls into the class of extended
latent Gaussian models [ELGMs; Stringer, Brown and Stafford (2022)].

To allow interactive review and iteration of model results by workshop participants, the
inference procedure should be fast and have low memory usage. Because of the scale of
the model and challenging features of its posterior geometry (Neal, 2003), Markov chain
Monte Carlo (MCMC) approaches are prohibitively slow. In addition, we require the infer-
ence procedure to produce estimates reliably and automatically, across a range of country
settings, without knowledge of the specific data used in advance. As such, approaches requir-
ing substantial statistical expertise or tuning, as would be the case for monitoring MCMC
convergence and suitability, are not viable.

To meet these requirements, inference is currently conducted using an empirical Bayes
(EB) approach, with a Gaussian approximation to the latent field, via the Template Model
Builder (TMB) R package (Kristensen et al., 2016). We refer to this approach as TMB, dis-
tinguished from the package TMB. Owing to its speed and flexibility, TMB is gaining pop-
ularity, particularly in spatial statistics (Osgood-Zimmerman and Wakefield, 2022) and via
the user-friendly glmmTMB R package (Brooks et al., 2017). Inference in TMB is based on
optimisation of a C++ template function, with the option available to use a Laplace approx-
imation to integrate out any subset of the parameters. For the Naomi model, this subset is
the high-dimensional latent field, leaving a smaller number of hyperparameters. Taking in-
spiration from the AD Model Builder package (Fournier et al., 2012), TMB uses automatic
differentiation (Baydin et al., 2017) to calculate the derivatives required for gradient-based
numerical optimisation routines and the Laplace approximation.

Although the TMB approach is fast, within the empirical Bayes framework hyperparam-
eter uncertainty is not accounted for in the latent field posterior. We had concerns that this
would result in underestimation of posterior variances, and may have important practical
implications. As such, we were motivated to look for an approach closer to full Bayesian in-
ference, which is also flexible enough to be compatible with the model, as well as fast enough
to be run in production by country teams. To meet these requirements, we developed an in-
ference method based on adaptive Gauss-Hermite quadrature (AGHQ) extended to handle
integration over many hyperparameters. AGHQ is a quadrature method based on the theory
of polynomial interpolation, and is well suited to statistical estimation problems in which the
integrand is well approximated by a Gaussian multiplied by a polynomial. Bilodeau, Stringer
and Tang (2022) prove stochastic convergence rates for Bayesian posterior quantities when
the normalising constant is estimated using AGHQ. However, it is not computationally fea-
sible to use AGHQ in >20 dimensions directly, as exponentially many nodes are required.
Instead, we used principal components analysis (PCA) of the inverse curvature at the mode
to find a subspace which explained most of the hyperparameter variance. For the Naomi
model in Malawi, this resulted in a grid which was tractable as it had millions of times fewer
nodes the corresponding dense grid. Our implementation of the method makes use of the
existing Naomi TMB template, and is immediately compatible with any model with such a
template.

Other work aiming to extend the scope of INLA-like methods includes the inlabru
R package (Bachl et al., 2019), INLA within MCMC (Gómez-Rubio and Rue, 2018), and
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importance sampling with INLA (Berild et al., 2022), all of which leverage the R-INLA
R package (Martins et al., 2013). The approach of inlabru is to approximate non-linear
predictors using linearisation, by making iterative calls to R-INLA. INLA within MCMC
and importance sampling with INLA are suitable for models which are LGMs conditional
on some subset of the parameters being fixed. It’s not clear the extent to which any of these
methods would be compatible with Naomi.

The remainder of this paper is organised as follows. Section 2 outlines the version of the
Naomi model that we consider in this paper, and Section 3 describes how it falls within the
ELGM framework. In Section 4 we review the deterministic inference method for ELGMs
used by Stringer, Brown and Stafford (2022) based on nested application of AGHQ and the
Laplace approximation, before introducing the PCA-based modification we use to enable
application to Naomi. In a case study (Section 5) we evaluate the accuracy of PCA-AGHQ
for the simplified Naomi model fit to data from Malawi, as compared with TMB and gold-
standard MCMC. Finally, we discuss our conclusions, and directions for future research in
Section 6.

2. Simplified Naomi model. Eaton et al. (2021) specify a joint model linking three
small-area estimation models. We consider a simplified version defined only at the time of
the most recent household survey with HIV testing, omitting nowcasting and temporal pro-
jection, as these time points involve limited inferences. An overview of the simplified model
is given below, and a more complete mathematical description is provided in Appendix S1.

2.1. Household survey component . Consider a country in sub-Saharan Africa where a
household survey with complex survey design has taken place. Let x ∈ X index district,
a ∈ A index five-year age group, and s ∈ S index sex. For ease of notation, let i index the
finest district-age-sex division included in the model. Let I ⊆X ×A×S be a set of indices
i for which an aggregate observation is reported, and I be the set of all I such that I ∈ I .

Let Ni ∈ N be the known, fixed population size. We infer the following unknown HIV
indicators using linked regression equations:

• HIV prevalence ρi ∈ [0,1], the proportion of individuals who are HIV positive;
• antiretroviral therapy (ART) coverage αi ∈ [0,1], the proportion of people living with HIV

who receive ART treatment; and
• annual HIV incidence rate λi > 0, the yearly rate of new HIV infections occurring.

We specify independent logistic regression models for HIV prevalence and ART coverage
in the general population such that logit(ρi) = ηρi and logit(αi) = ηαi . HIV incidence rate is
modelled on the log scale as log(λi) = ηλi , and depends on adult HIV prevalence and adult
ART coverage. The structured additive predictors ηθi for θ ∈ {ρ,α,λ} are given in Appendix
S1. Let κi be the proportion recently infected among HIV positive persons. We link this
proportion to HIV incidence via

(2.1) κi = 1− exp

(
−λi ·

1− ρi
ρi

· (ΩT − βT )− βT

)
,

where the mean duration of recent infection ΩT and the proportion of long-term HIV infec-
tions misclassified as recent βT are strongly informed by priors for the particular survey.

These processes are each informed by household survey data. We first calculate the
weighted aggregate survey observations

θ̂I =

∑
j wj · θj∑
j wj

,
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with individual responses θj ∈ {0,1} and design weights wj for each of θ ∈ {ρ,α,κ}. The
design weights are provided by the survey and aim to reduce bias by decreasing possible cor-
relation between response and recording mechanism (Meng, 2018). The index j runs across
all individuals in strata i ∈ I within the relevant denominator i.e. for ART coverage, only
those individuals who are HIV positive. We take the weighted observed number of outcomes
to be yθI =mθ

I · θ̂I where

mθ
I =

(∑
j wj

)2∑
j w

2
j

,

is the Kish effective sample size (ESS) (Kish, 1965). As the Kish ESS is maximised by con-
stant design weights, in exchange for reducing bias we reduce our ESS and thereby increase
variance. We use a binomial working likelihood (Chen, Wakefield and Lumely, 2014) defined
to operate on the reals

yθI ∼ xBin(mθ
I , θI)

to model these aggregate observations, where θI are the following weighted aggregates

ρI =

∑
i∈I Niρi∑
i∈I Ni

, αI =

∑
i∈I Niρiαi∑
i∈I Niρi

, κI =

∑
i∈I Niρiκi∑
i∈I Niρi

.

Though our approach accounts for effect of survey weighting on the variance, it does not
take into account correlation structure in the samples, for example due to cluster sampling
(Wakefield, Okonek and Pedersen, 2020).

2.2. ANC testing component . HIV prevalence ρANC
i and ART coverage αANC

i among
pregnant women are modelled as offset from the general population indicators as follows

logit(ρANC
i ) = logit(ρi) + ηρ

ANC

i ,

logit(αANC
i ) = logit(αi) + ηα

ANC

i .

These processes are informed by likelihoods specified for aggregate ANC data from the year
of the most recent survey. We take the number of ANC clients with ascertained status to be
fixed asmρANC

I . We then model the number of those with positive status yρ
ANC

I , and the number
of those already on ART prior to their first ANC visit yα

ANC

I using nested binomial likelihoods

yρ
ANC

I ∼ Bin(mρANC

I , ρANC
I ),

yα
ANC

I ∼ Bin(yρ
ANC

I , αANC
I ).

As in the household survey component, we use weighted aggregates

ρANC
I =

∑
i∈I Ψiρ

ANC
i∑

i∈I Ψi
, αANC

I =

∑
i∈I Ψiρ

ANC
i αANC

i∑
i∈I Ψiρ

ANC
i

,

with Ψi the number of pregnant women, which we assume to be fixed.

2.3. ART attendance component . People living with HIV sometimes choose to access
ART services outside of the district that they reside in. To account for this, we model the
probabilities of accessing services outside the home district using multinomial logistic re-
gressions. Briefly, let γx,x′ be the probability that a person on ART residing in district x
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receives ART in district x′, and assume γx,x′ = 0 unless x= x′ or the two districts are neigh-
bouring such that x∼ x′. We model the log-odds γ̃x,x′ = logit(γx,x′) using a structured ad-
ditive predictor ηγ̃x which only depends on the home district x. As such, we assume travel to
each neighbouring district, for all age-sex strata, is equally likely. We then model aggregate
ART attendance data yN

ART

I using a Gaussian approximation to a sum of binomials. This sum
is over both strata i ∈ I and the number of ART clients travelling from district x′ to x. More
details regarding this part of the model are provided in Appendix S1.

2.4. Summary. In all, Naomi is a joint model on the observations y = (yθI ) for θ ∈
{ρ,α,κ, ρANC, αANC,NART} and I ∈ I . The structured additive predictors contain intercept
effects, age random effects, and spatial random effects which we collectively describe as
the latent field x. The latent field is controlled by hyperparamters θ which include stan-
dard deviations, first-order autoregressive model correlation parameters, and reparameterised
Besag-York-Mollie model [BYM2; Simpson et al. (2017)] proportion parameters.

3. Extended Latent Gaussian models. We now describe the latent Gaussian class of
models, and an extension which encapsulates the complexities of Naomi.

3.1. Definitions. Latent Gaussian models [LGMs; Rue, Martino and Chopin (2009)] are
three-stage hierarchical models with likelihood

yi ∼ p(yi |ηi,θ1), i ∈ [n]

µi = E(yi |ηi) = g(ηi),

ηi = β0 +

p∑
l=1

βjzji +

r∑
k=1

fk(uki),

where [n] = {1, . . . , n}. The response variable is y = (y)i∈[n] with likelihood p(y |η,θ1) =∏n
i=1 p(yi |ηi,θ1), where η = (η)i∈[n]. Each response has conditional mean µi with inverse

link function g : R→ R such that µi = g(ηi). The vector θ1 ∈ Rs1 , with s1 assumed small,
are additional parameters of the likelihood. The structured additive predictor ηi may include
an intercept β0, linear effects βj of the covariates zji, and unknown functions fk(·) of the
covariates uki. The parameters β0, {βj}, {fk(·)} are each assigned Gaussian priors. It is
convenient to collect these parameters into a vector x ∈ RN called the latent field such that
x ∼ N (0,Q(θ2)

−1) where θ2 ∈ Rs2 are further parameters, again with s2 assumed small.
Let θ = (θ1,θ2) ∈Rs with m= s1 + s2 be all hyperparameters, with prior p(θ).

Extended latent Gaussian models [ELGMs; Stringer, Brown and Stafford (2022)] relax the
restriction that there is a one-to-one mapping between the mean response µ and structured
additive predictor η. Instead, the structured additive predictor is redefined as η = (η)i∈[Nn],
where Nn ∈N is a function of n, and it is possible that Nn ̸= n. Each mean response µi now
depends on some subset Ji ⊆ [Nn] of indices of η, with ∪ni=1Ji = [Nn] and 1≤ |Ji| ≤Nn.
The inverse link function g(·) is redefined for each observation to be a possibly many-to-one
mapping gi : R|Ji| → R, such that µi = gi(ηJi

). Importantly, this mapping allows for the
presence of non-linearity in the model. Put together, ELGMs are then of the form

yi ∼ p(yi |ηJi
,θ1), i ∈ [n]

µi = E(yi |ηJi
) = gi(ηJi

),

ηj = β0 +

p∑
l=1

βjzji +

r∑
k=1

fk(uki), j ∈ [Nn],

with latent field and hyperparameter priors as in the LGM case.
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3.2. Naomi as an ELGM. Naomi is a spatio-temporal model with a large Gaussian latent
field, governed by a smaller number of hyperparameters. However, it is an ELGM rather
than an LGM, for the reasons below. Note that when dependence on a specific number of
structured additive predictors is given, it is for that factor in isolation, and as such should be
considered illustrative.

1. In the household survey component, HIV incidence depends on district-level adult HIV
prevalence and ART coverage. This reflects basic HIV epidemiology: HIV incidence
is proportional to unsuppresed viral load such that such that λ ∝ ρ(1 − ω · α), with
ω = 0.7 a fixed constant. As a result, each log(λi) depends on 28 structured additive
predictors (where 28 arises from the product of 2 sexes [male and female], 7 age groups,
[{15-19, . . . ,45-49}], and 2 indicators [HIV prevalence and ART coverage]).

2. In the household survey component, HIV incidence and HIV prevalence are linked to the
proportion recently infected via Equation 2.1.

3. In the ANC testing component, HIV prevalence and ART coverage depend upon the re-
spective indicators in the household survey component. Though logit(ρi) and logit(αi) are
Gaussian, this nonetheless introduces dependence of each mean response on two struc-
tured additive predictors.

4. Throughout the model components, processes are modelled at the finest distict-age-sex
division i, but likelihoods are defined for observations aggregated over sets of indices
i ∈ I . As such, all observations are related to |I| structured additive predictors.

5. Individuals taking ART, or who have been recently infected, must be HIV positive.
6. The ART attendance component uses a multinomial model with softmax link function

which takes as input |{x′ : x′ ∼ x}|+1 structured additive predictors, one for each neigh-
bouring district plus one for remaining in the home district.

7. Multiple link functions are used throughout the model, such that there is no one inverse
link function g.

4. Inference methods for Naomi . We first describe (Section 4.1) the inference method
for ELGMs based on nested applications of the Laplace approximation and AGHQ used
by Stringer, Brown and Stafford (2022). We then propose (Section 4.2) an extension of the
method which uses PCA to facilitate inference for Naomi, which otherwise would be in-
tractable.

4.1. Inference for ELGMs. The joint posterior of the parameters (x,θ) given data y in
an ELGM is given by

p(x,θ |y)∝ p(θ)|Q(θ)|n/2 exp

(
−1

2
x⊤Q(θ)x+

n∑
i=1

log p(yi |xJi
,θ)

)
.

We consider approximations to the posterior marginals of each latent random variable xi and
hyperparameter θj given by

p(xi |y)≈ p̃(xi |y) =
∫
p̃(xi |θ,y)p̃(θ |y)dθ, i ∈ [N ],(4.1)

p(θj |y)≈ p̃(θj |y) =
∫
p̃(θ |y)dθ−j j ∈ [m].(4.2)

4.1.1. Laplace approximation. Let p̃G(x |θ,y) = N (x | x̂(θ), Ĥ(θ)−1) be a Gaussian
approximation to p(x |θ,y) with mode and precision matrix given by

x̂(θ) = argmax
x

log p(y,x,θ),(4.3)
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Ĥ(θ) =− ∂2

∂x∂x⊤ log p(y,x,θ)|x=x̂(θ).(4.4)

Then the Laplace approximation (Tierney and Kadane, 1986) to p(θ,y) is given by

(4.5) p̃LA(θ,y) =
p(y,x,θ)

p̃G(x |θ,y)

∣∣∣
x=x̂(θ)

=

√
|Ĥ(θ)|
(2π)N

p(y, x̂(θ),θ).

Inference proceeds by optimising Equation 4.5 using a gradient-based routine to obtain
θ̂LA = argmaxθ p̃LA(θ,y). Each evaluation in the optimisation requires an inner optimisation
to obtain x̂(θ) via Equation 4.3. Supposing the hyperparameters are to be considered fixed, as
with the TMB approach used currently for Naomi, then latent field joint and marginal infer-
ences then follow directly from the Gaussian approximation p̃G(x | θ̂LA,y). Hyperparameter
inferences can be obtained according to some method which should be specified here as well.

4.1.2. Adaptive Gauss-Hermite quadrature. Let z ∈Q(m,k) be m-dimensional Gauss-
Hermite quadrature [GHQ; Davis and Rabinowitz (1975)] rule with k nodes per dimension
constructed using the product rule such that Q(m,k) =Q(1, k)× · · · ×Q(1, k) where

(4.6) Q(1, k) = {z :Hk(z) = (−1)k exp(z2/2)
d

dzk
exp(−z2/2) = 0},

with ϕ(·) is a standard Gaussian density. The corresponding weighting function
ω : Q(m,k) → R is given by ω(z) =

∏m
j=1ω(zj) where ω(z) = k!/[Hk+1(z)]

2ϕ(z).
GHQ is exact for functions which are a Gaussian density multiplied by a polynomial of total
order no more than 2k− 1.

Let ĤLA(θ̂LA) = −∂2 log pLA(θ̂LA,y) be the curvature at the mode θ̂LA and
[ĤLA(θ̂LA)]

−1 = P̂LAP̂
⊤
LA be a matrix decomposition of the inverse curvature. An adaptive

Gauss-Hermite quadrature [AHGQ; Naylor and Smith (1982); Tierney and Kadane (1986)]
estimate of the normalising constant p(y) based on the Laplace approximation is given by

(4.7) p(y)≈
∫
θ
p̃LA(θ,y)≈ p̃AGHQ(y) = |P̂LA|

∑
z∈Q(m,k)

p̃LA(P̂LAz+ θ̂LA,y)ω(z).

When k = 1 Equation 4.7 corresponds to a Laplace approximation. The unadapted nodes
are shifted by the mode and rotated by a matrix decomposition of the inverse curvature such
that z 7→ P̂LAz+ θ̂LA. Repositioning the nodes is crucial for statistical quadrature problems
like ours, where the integral depends on data y and regions of high density are not known in
advance. Two alternatives for the matrix decomposition (Jäckel, 2005) are (1) the Cholesky
decomposition P̂LA = L̂LA, where L̂LA is lower triangular, and (2) the spectral decomposition
P̂LA = ÊLAΛ̂

1/2
LA , where ÊLA = (êLA,1, . . . êLA,m) contains the eigenvectors of [ĤLA(θ̂LA)]

−1

and Λ̂LA is a diagonal matrix containing its eigenvalues (λ̂LA,1, . . . , λ̂LA,m). This estimate
may be used to normalise the Laplace approximation

(4.8) p̃LA(θ |y) =
p̃LA(θ,y)

p̃AGHQ(y)
.

To obtain inferences for the latent field (Equation 4.1) we reuse the adapted nodes and weights
(Rue, Martino and Chopin, 2009; Stringer, Brown and Stafford, 2022)

(4.9) p̃(x |y) = |P̂LA|
∑

z∈Q(m,k)

p̃G(x | P̂LAz+ θ̂LA,y)p̃LA(P̂LAz+ θ̂LA |y)ω(z).

Samples from this mixture of Gaussians may be obtained by drawing a node z with multino-
mial probabilities λ(z) = |P̂LA|pLA(P̂LAz+ θ̂LA |y)ω(z), then drawing from the correspond-
ing Gaussian p̃G(x | P̂LAz+ θ̂LA,y).
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FIGURE 1. The Gauss-Hermite quadrature nodes z ∈ Q(2,3) for a two dimensional integral with three nodes
per dimension (A). Adaption occurs based on the mode and covariance matrix of the target via the Cholesky
decomposition of the inverse curvature at the mode (B). In PCA-AGHQ (C) only nodes along the first s principal
components are kept. Here, 95% of variation is explained by the first principal component. The integrand is
f(θ) = sn(0.5θ1, α= 2) ·sn(0.8θ1−0.5θ2, α=−2), where sn(·) is the standard skewnormal probability density
function with shape parameter α ∈R.

4.2. Principal components analysis. Use of the product rule grid described above re-
quires |Q(m,k)| = km quadrature points. This quickly becomes intractable as m increases
for k > 1. An alternative is to let k= (k1, . . . , km) be a vector of levels for each dimension of
θ. We may then define Q(m,k) =Q(1, k1)× · · · × Q(1, km) to be a GHQ grid with possi-
ble variable levels of size |Q(m,k)|=

∏m
j=1 kj . Let Q(m,s, k) correspond to Q(m,k) with

choice of levels kj = k, j ≤ s and kj = 1, j > s for some s≤m. For example, for m= 2 and
s= 1 then k= (k,1). In combination with use of the spectral decomposition, this choice of
levels is analogous to a principal components analysis (PCA) approach to AGHQ. We refer
to this approach as PCA-AGHQ, with corresponding estimate of the normalising constant
given by

(4.10) p̃PCA(y) = |ÊLAΛ̂
1/2
LA |

∑
z∈Q(m,s,k)

p̃LA(ÊLA,sΛ̂
1/2
LA,sz+ θ̂LA,y)ω(z),

where ÊLA,s is an m×s matrix containing the first s eigenvectors, Λ̂LA,s is the s×s diagonal
matrix containing the first s eigenvalues, and ω(z) =

∏s
j=1ωs(zj)×

∏d
j=s+1ω1(zj). Panel C

of Figure 1 illustrates PCA-AGHQ for a case when m= 2 and s= 1. As AGHQ with k = 1
corresponds to the Laplace approximation, PCA-AGHQ can be interpreted as performing
AGHQ on the first s principal components of the inverse curvature, and a Laplace approxi-
mation on the remaining m− s principal components. Inference for the latent field follows
analogously to Equation 4.9.

5. Application to data from Malawi. We fit the simplified Naomi model (Section 2) to
data from Malawi using three inferential approaches. These were:

1. TMB (54 seconds), based on a Gaussian approximation at θ̂LA.
2. PCA-AGHQ (1.2 hours), based on a Gaussian approximation mixture at the adapted nodes

z ∈ Q(m,s, k), as described in Section 4.2, and implemented via extension of the aghq
package (Stringer, 2021).
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Method Software Details

TMB TMB 1000 samples
PCA-AGHQ aghq k = 3, s= 8 (see Section 5.2), 1000 samples
NUTS tmbstan 4 chains of 100000 iterations, with the first 50000 iterations

of each chain discarded as warmup, thinned by a factor of 40,
to give a total of 5000 samples kept. Default NUTS tuning
parameters (Hoffman et al., 2014).

TABLE 1
A summary of settings used for each inferential method.

3. NUTS (3.3 days), the Hamiltonian Monte Carlo (HMC) algorithm No-U-Turn Sampling
using Stan (Carpenter et al., 2017) implemented via the tmbstan package (Monnahan
and Kristensen, 2018).

Our goal was to determine the accuracy of the approximate methods (TMB and PCA-
AGHQ) as compared with the gold-standard (NUTS). Settings used for each inferential
method are provided in Table 1, and, where relevant, discussed further below. The TMB C++
user-template used to specify the log-posterior was the same for each approach. The dimen-
sion of the latent field was N = 467 and the dimension of the hyperparameters was m= 24.
For the deterministic methods, following inference we simulated hyperparameter and latent
field samples. For all methods, we simulated age-sex-district specific HIV prevalence, ART
coverage and HIV incidence from the latent field and hyperparameter posteriors. To provide
intuition, model outputs from TMB are illustrated in Figure 2.

FIGURE 2. District-level HIV prevalence (A), ART coverage (B), and new HIV cases and HIV incidence (C) for
adults 15-49 in Malawi. Inference conducted using TMB.

The R (R Core Team, 2021) code used to produce all results we describe below is available
at github.com/athowes/naomi-aghq. We used orderly (FitzJohn et al., 2022)
for reproducible research, ggplot2 for data visualisation (Wickham, 2016) and rticles
(Allaire et al., 2022a) for reporting via rmarkdown (Allaire et al., 2022b).

5.1. NUTS convergence. Due to low effective sample size ratios (Figure S9), obtain-
ing acceptable NUTS diagnostics required four chains run in parallel for 100000 iterations,
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thinned by a factor of 20 for ease-of-storage. There were no divergent transitions, and the
largest potential scale reduction factor (Gelman and Rubin, 1992; Vehtari et al., 2021) was
R̂ = 1.021 (Figure S8). We considered the NUTS results a gold-standard, though inaccura-
cies remain possible. For full details see Appendix S5.

5.2. Use of PCA-AGHQ . We used a Scree plot based on the spectral decomposition of
ĤLA(θ̂LA)

−1 to select the number of principal components to keep (Figure S3). We found
that s= 8 principal components were sufficient to explain 87% of total variation. This choice
of s gave a visually similar reduced rank approximation to the inverse curvature (Figure S4).

5.2.1. Visual inspection. Overlaying the resulting 38 = 6561 PCA-AGHQ nodes onto the
hyperparameter marginal posteriors obtained using NUTS, we found approximately 12 of the
24 hyperparameters had well covered marginals (Figure 3). Though 12 does improve on the
8 naively obtained with a dense grid, there remained poorly covered hyperparameters. Cov-
erage was associated with marginal standard deviation (Figure S5). All constrained hyperpa-
rameters θ were transformed to the real line, using either a log (θ > 0) or logit (θ ∈ [0,1])
transformation. As a result, marginal standard deviations for log transformed hyperparame-
ters were systematically smaller than those which were logit transformed (Figure S6).

5.2.2. Interpreation of eigenvectors. The ordered eigenvectors correspond to the direc-
tions of greatest variation in the inverse curvature. The first and second eigenvectors each
contain coupled AR1 standard deviation and correlation parameters (Figure S7). These pa-
rameters are weakly identified, and have high correlation in the the NUTS posterior pairs plot
(Figure S12, average absolute correlation across all four pairs of 0.81). The reason why is that
the same amount of variation can equally be explained by high standard deviation and high
correlation or low standard deviation and low correlation. The BYM2 standard deviation and
proportion parameters on the other hand are designed to be orthogonal, and as such did not
display posterior correlation (Figure S13, average absolute correlation across all four pairs of
0.17) or appear prominently in the eigenvectors.

5.2.3. Normalising constant estimation. We assessed appropriateness of the quadrature
grid by comparing the estimate of log pPCA(y) for a range of settings. Convergence in
log pPCA(y) as s and k are increased may suggest a suitable grid has been reached. Appendix
S3.2 shows those values which we could compute in a reasonable time (less than 24 hours
using a high performance computing cluster).

5.3. Model assessment.

5.3.1. Posterior contraction. To assess the informativeness of the data we compared the
prior variance σ2prior(ψ) to the posterior variance σ2posterior(ψ) via the posterior contraction
(Schad, Betancourt and Vasishth, 2021)

(5.1) c(ψ) = 1− (σ2posterior(ψ)/σ
2
prior(ψ)),

where ψ is a model parameter. We found that (Figure S2) something something. For greater
interpretability, facet parameters in this plot according to model component.

5.3.2. Coverage. We assessed the coverage of our estimates via the uniformity of the
data within each posterior marginal distribution. Let {ψi}ni=1 be posterior marginal samples.
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logit_phi_rho_as logit_phi_rho_x logit_phi_rho_xs OmegaT_raw

logit_phi_alpha_as logit_phi_alpha_x logit_phi_alpha_xs logit_phi_rho_a

log_sigma_rho_x log_sigma_rho_xa log_sigma_rho_xs logit_phi_alpha_a

log_sigma_lambda_x log_sigma_or_gamma log_sigma_rho_a log_sigma_rho_as

log_sigma_alpha_xa log_sigma_alpha_xs log_sigma_ancalpha_x log_sigma_ancrho_x

log_betaT log_sigma_alpha_a log_sigma_alpha_as log_sigma_alpha_x

FIGURE 3. The 6561 PCA-AGHQ node positions (green, rug plot) projected onto the hyperparameter
marginal posteriors (grey, histogram) for each of the 24 hyperparameters. Some hyperparameters, such as
logit_phi_alpha_x, are well covered where as others, such as log_sigma_lambda_x, are near only
being covered by one unique node.

5.4. Inference comparison. We compared the accuracy of posterior distributions pro-
duced by TMB and PCA-AGHQ as compared with those from NUTS for latent field parame-
ters and model outputs. The metrics we used were (1) marginal point estimates, (2) marginal
Kolmogorov-Smirnov and Anderson-Darling tests using the empirical cumulative distribu-
tion function (ECDF), (3) joint Pareto-smoothed importance sampling results, and (4) joint
maximum mean discrepancy results.
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5.4.1. Point estimates. For the latent field, the root mean square error (RMSE) between
posterior mean estimates from PCA-AGHQ and NUTS (0.063) was 20% lower than that
between TMB and NUTS (0.078). For the posterior standard deviation estimates, there was a
substantial 60% reduction in RMSE: from 0.14 (TMB) to 0.05 (PCA-AGHQ). These results,
alongside those for the mean absolute error (MAE), are presented in Figure 4.

These improvements did not transfer to the model outputs (Figure 5).

FIGURE 4. For the latent field PCA-AGHQ modestly improves estimation of the posterior mean, and substantially
improves estimation of the posterior standard deviation, as compared with TMB.

5.4.2. Distribution tests. The two-sample Kolmogorov-Smirnov (KS) test statis-
tic (Smirnov, 1948) is the maximum absolute difference between two ECDFs
F (ω) = 1

n

∑n
i=1 Iψi≤ω . See Figure 6 for an example. Additionally, we found that KS

test results were negatively correlated with ESS (Figure S14).

5.4.3. Pareto-smoothed importance sampling. Let {ψi}ni=1 be joint posterior samples.
Pareto-smoothed importance sampling [PSIS; Vehtari et al. (2015), Yao et al. (2018)] is a
method for stabilising the ratios used in importance sampling. Results for the PSIS analysis
are pending.
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FIGURE 5. PCA-AGHQ doesn’t do so well for the model outputs.

5.4.4. Maximum mean discrepancy. Let Ψ1 = {ψ1
i }ni=1 and Ψ2 = {ψ2

i }ni=1 be two sets
of joint posterior samples, and k be a kernel. The maximum mean discrepancy [MMD; Gret-
ton et al. (2006)] can be empirically estimated by

MMD(Ψ1,Ψ2) =

√√√√ 1

n2

n∑
i,j=1

k(ψ1
i ,ψ

1
j )−

2

n2

n∑
i,j=1

k(ψ1
i ,ψ

2
j ) +

1

n2

n∑
i,j=1

k(ψ2
i ,ψ

2
j ).

We set k(ψ1,ψ2) = exp(−σ∥ψ1−ψ2∥2) with σ estimated from data using the kernlab R
package (Karatzoglou et al., 2019). As compared with NUTS, the MMD from PCA-AGHQ
(0.071) was 11% smaller than that of TMB (0.080).

5.5. Case study on exceedance probabilities.

5.5.1. Meeting the second 90. Ambitious fast-track targets for scaling up ART treatment
have been developed by UNAIDS, with the goal of “ending the AIDS epidemic by 2030”.
Meeting the “90-90-90” fast-track target requires that 90% of people living with HIV know
their status, 90% of those are on ART, and 90% of those have suppressed viral load. Naomi
can be used to identify treatment gaps by calculating the probability that the second 90 target
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FIGURE 6. Example KS test for one parameter.

has been met, that is P(αi > 0.92 = 0.81) for each strata i. We found that for women both
TMB and PCA-AGHQ underestimate these exceedance probabilities (Figure 7, first row).
We hypothesise this discrepancy in accuracy by sex is related to interactions between the
household survey and ANC components of the model creating a more challenging posterior
geometry.

5.5.2. Finding strata with high incidence. Some HIV interventions are cost-effective
only within high HIV incidence settings, typically defined as higher than 1% incidence per
year. Naomi can be used to assess the probability of a strata having high incidence by evaluat-
ing P(λi > 0.01). We found that both TMB and PCA-AGHQ overestimate these exceedance
probabilities (Figure 7, second row). This is surprising, in that we expect inferences from
NUTS to be more heavy-tailed than those from TMB or PCA-AGHQ.

6. Discussion. We developed an approximate Bayesian inference algorithm, combining
AGHQ with PCA, motivated by a challenging problem in small-area estimation of HIV indi-
cators. For the simplified Naomi model in Malawi (Section 5) we demonstrated the method
to be more accurate at inferring posterior distributions of model parameters, across a broad
range of metrics, than TMB, and substantially faster than NUTS. However, improvements
in accuracy for model parameters did not translate into model outputs. Indeed, we found
posterior exceedance probabilities (Section 5.5) from both TMB and PCA-AGHQ to have
systematically inaccuracies, with the potential to meaningfully mislead policy. If possible,
though not a desirable situation, it could be advisable to provide gold-standard NUTS re-
sults after the workshop has concluded. However, running NUTS for Naomi took days, in
countries with 100s of districts it may simply not be feasible.

PCA-AGHQ could be added to the Naomi web interface as an alternative to TMB. An-
alysts may then quickly iterate over model options using a fast inference approach, before
switching to a more accurate approach once they are happy with the results. By selecting s
and k, PCA-AGHQ can be adjusted to suit the computational budget available. We selected s
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FIGURE 7. Though PCA-AGHQ was marginally better, both approximate inference methods were meaningfully
inaccurate as compared with NUTS for estimating exceedance probabilities. For the second 90 target the inaccu-
racy varied substantially by sex.

based on the Scree plot, and for the most part fixed k = 3. Whether it is preferable, for a given
computational budget, to increase s or increase k is an open question. Further strategies, such
as gradually lowering k over the principal components, could also be considered.

We hope that our work further encourages use of deterministic inference algorithms for
ELGMs in applied settings, as well as methodological exploration of their accuracy and
limitations. Among the ELGM-type structures of particular interest in spatial epidemiology
are aggregated Gaussian process models (Nandi et al., 2020) and evidence synthesis models
(Amoah, Diggle and Giorgi, 2020).

6.1. Suggestions for future work.

6.1.1. Improved quadrature grids for moderate dimensions. We aimed to develop a
quadrature grid which allocates more effort to more important dimensions. While PCA is
a sensible approach, there are avenues where it does not behave as one might hope, or oth-
erwise overlooks potential benefits. The first challenge we identified was using PCA when
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the dimensions have different scales. Specifically, we found logit-scale hyperparamters to
be systematically favoured over those on the log-scale. Second, the amount of variation ex-
plained for the Hessian matrix is not of directly interest, rather the effect of the different
dimensions on the relevant outputs. Using measures of importance from sensitivity analysis,
such as Shapley values (Shapley et al., 1953) may be preferable. Third, it is more important
to allocate quadrature nodes to those marginals which are non-Gaussian. This is because the
Laplace approximation is exact when the integrand is Gaussian, so a single quadrature node
is sufficiently. The difficulty is, of course, knowing in advance which marginals will be non-
Gaussian. This could be done if there were a cheap way to obtain posterior means, which
could then be compared to posterior modes obtained using optimisation. Another approach
would be to measure the fit of marginal samples from a cheap approximation, like TMB. The
main challenge is that the measurements have to for marginals, ruling out approaches like
PSIS which operate on joint distributions (Yao et al., 2018).

6.1.2. Computational speed-ups. Integration over a moderate number of hyperparame-
ters posed a challenge, and led us to use a quadrature grids with a large number of nodes.
However, computation at each node is independent, such that the run-time of the algorithm
could potentially be significantly improved by parallel computing. Further computational
speed-ups might be obtained using graphics processing units (GPUs) speciallised for the rel-
evant matrix operations.

6.1.3. Comparison to other MCMC algorithms. Blocked Gibbs sampling (Geman and
Geman, 1984) or slice sampling (Neal, 2003), may be better suited than NUTS to sampling
from Naomi. These algorithms are available, and customisable, including e.g. choice of block
structure within the NIMBLE probabilistic programming language (de Valpine et al., 2017).

6.1.4. Implementation into probabilistic programming languages. Though gaining in
popularity, the user-base of TMB remains relatively small. Furthermore, for users unfamiliar
with C++, it can be challenging to use. As such, it could be beneficial to implement AGHQ
within other probabilistic programming languages. Implementation in NIMBLE could be rel-
atively straightforward, as it (for version >1.0.0) includes functionality for automatic differ-
entiation and Laplace approximation, built using CppAD like TMB. Similarly, implementation
in Stan could be possible by use of the bridgestan package (Ward, 2023) together with
the adjoint-differentiated Laplace approximation of Margossian et al. (2020).

6.1.5. Statistical theory. Stringer, Brown and Stafford (2022) (Theorem 1) bound the
total variation error of AGHQ, establishing convergence in probability of coverage probabil-
ities under the approximate posterior to those under the true posterior. Similar theory might
be established for PCA-AGHQ, or more generally AGHQ with varying numbers of nodes
per dimension. The challenge of connecting this theory to use of the quadrature rule within
nested compuations remains an open question.
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