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Summary

e We developed an approximate Bayesian inference
method using Laplace approximation, adaptive Gauss-
Hermite quadrature and principal component analysis

e Motivation: an evidence synthesis model for small-area
estimation of HIV indicators in >35 countries in sub-
Saharan Africa

e Implemented using the aghg package (Stringer 2021),
and compatible with any model with a Template Model
Builder TMB (Kristensen et al. 2016) C++ user template

1. The Naomi HIV model

e District-level model of HIV indicators which synthesises
data from 1) household surveys, 2) antenatal care (ANC)
clinics, and 3) routine service provision of antiretroviral
therapy (ART) (Eaton et al. 2021)

o Combining evidence from multiple data sources helps
overcome the limitations of any one

o Small-area estimation methods (structured random
effects) to overcome limited district-level sample sizes

e Yearly estimation process: model run interactively by by
country teams using naomi.unaids.org web-app
o Figure 1 illustrates the seven stages of using the app

e Inference conducted in minutes using empirical Bayes
and a Gaussian approximation

e Days to get accurate answers with MCMC via tmbstan
(Monnahan and Kristensen 2018): not practical!

e Naomi has a large latent field x controlled by a smaller
number of hyperparameters 6

e Extended latent Gaussian model (Stringer, Brown, and
Stafford 2022): more complex dependency structures
than a latent Gaussian model

e |Looking for a fast, approximate approach, that properly
takes uncertainty in hyperparameters into account

o
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Figure 1. Model fitting occurs interactively in stages

2. Inference procedure
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Figure 2: Demonstration of Gauss-Hermite quadrature,
adaption, and our principal components approach.

e Laplace approximation Integrate out latent field using a
Gaussian approximation to the denominator
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p(y, z,0)
ﬁc(x | 0, y)

where p¢(z |6,y) = N (z|2(0), H(0) )
o Use automatic differentiation via CppAD in TMB

e Adaptive Gauss-Hermite Quadrature (AGHQ) perform
quadrature over the hyperparameters

p(@, y) ~ ﬁLA(ea y) —
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where m = dim(6) and the Gauss-Hermite quadrature
rule z € Q(m, k) with weights w : @ — R and k points
per dimension is adapted (Figure 2) based upon

o The mode § = argmax,_gpra(0,y)
o A matrix decomposition LL' = —87 logpa(8,y)|,_;
e PCA-AGHQ To integrate over large spaces, use the

spectral decomposition L = EAY? and keep only the
first s < m principal components

3. Application to Malawi

e Malawi is a relatively small country but still has latent
field dim(x) = 467 and hyperparameters dim(6) = 24

C: HIV incidence
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Figure 3: District-level model outputs for adults 15-49.

e Run three methods: 1. TMB (baseline, 54 secs), 2. PCA-
AGHQ (new, 1 hour), 3. NUTS (gold-standard, 3.3 days)

o For PCA-AGHQ k£ = 3 and s = 8 chosen using Scree

nlot to explain ~90% of variance

o For NUTS 4 chains of 100,000 thinned by 40 were

required for good diagnostics e.g. all R < 1.025

TMB PCA-AGHQ
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MAE: 0.048
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Figure 4: PCA-AGHQ moderately improves the posterior mean
and substantially improves the posterior standard deviation

e PCA-AGHQ improves latent field point estimates (Figure
4) and distributional quantities like the Kolmogorov-
Smirnov (KS, Figure 5) test statistic (-9% on average)

ui_lambda_x[10], NUTS: Rhat = 1, ESS = 564
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Figure 5: KS test demonstration.

e Naomi can be used to assess probabilities targets have
been met e.g. 90% of those who know their HIV status are
on ART (“second 90")

o Though PCA-AGHQ is better (-16% RMSE), both TMB
and PCA-AGHQ are biased (Figure 6)

Estimated probabilities of meeting second 90 target
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Figure 6: PCA-AGHQ moderately improves the second 90 bias.

4. Future directions

e Can we do better than moderate improvements?
o Especially for the quantities of policy interest

e Laplace marginals with matrix algebra approximations
(Wood 2020) to speed up calculations

e Further methods for allocation of effort to “important”
dimensions of hyperparameter grid

Contact

o <[> github.com/athowes/naomi-aghg
o @ athowes. github.10
M athl9@ic.ac.uk
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