

Fast approximate Bayesian inference of HIV indicators using PCA adaptive Gauss-Hermite quadrature

Adam Howes^{1, 2}, Alex Stringer³, Seth R. Flaxman⁴, Jeffrey W. Eaton^{5, 2}

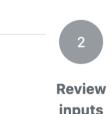
¹ Department of Mathematics, Imperial College London

² MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London

³ Department of Statistics and Actuarial Science, University of Waterloo

⁴ Department of Computer Science, University of Oxford

⁵ Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health


Summary

- developed an approximate Bayesian inference method using Laplace approximation, adaptive Gauss-Hermite quadrature and principal component analysis
- Motivation: an evidence synthesis model for small-area estimation of HIV indicators in >35 countries in sub-Saharan Africa
- Implemented using the aghq package (Stringer 2021), and compatible with any model with a Template Model Builder TMB (Kristensen et al. 2016) C++ user template

1. The Naomi HIV model

- District-level model of HIV indicators which synthesises data from 1) household surveys, 2) antenatal care (ANC) clinics, and 3) routine service provision of antiretroviral therapy (ART) (Eaton et al. 2021)
 - Combining evidence from multiple data sources helps overcome the limitations of any one
 - Small-area estimation methods (structured random effects) to overcome limited district-level sample sizes
- Yearly estimation process: model run interactively by by country teams using naomi.unaids.org web-app
- Figure <u>1</u> illustrates the seven stages of using the app
- Inference conducted in minutes using empirical Bayes and a Gaussian approximation
- Days to get accurate answers with MCMC via tmbstan (Monnahan and Kristensen 2018): not practical!
- ullet Naomi has a large latent field x controlled by a smaller number of hyperparameters heta
- Extended latent Gaussian model (Stringer, Brown, and Stafford 2022): more complex dependency structures than a latent Gaussian model
- Looking for a fast, approximate approach, that properly takes uncertainty in hyperparameters into account

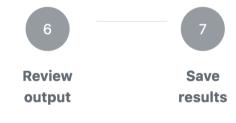


Figure 1: Model fitting occurs interactively in stages

2. Inference procedure

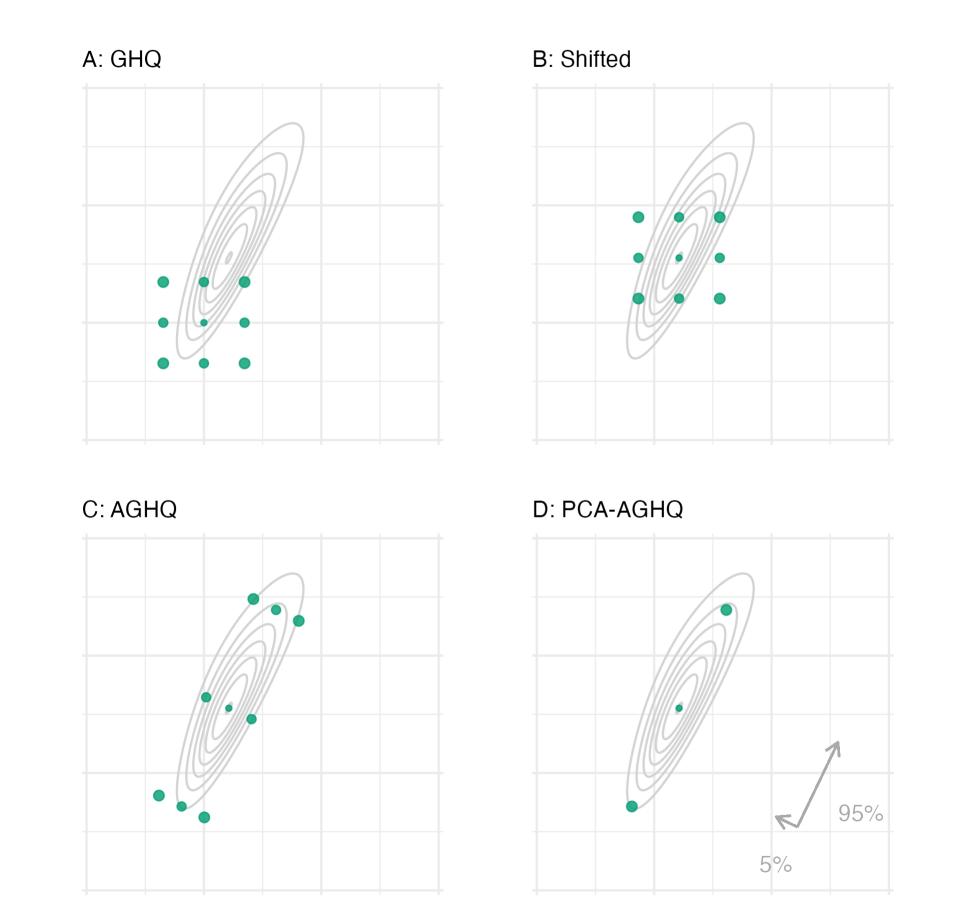


Figure 2: Demonstration of Gauss-Hermite quadrature, adaption, and our principal components approach.

• Laplace approximation Integrate out latent field using a Gaussian approximation to the denominator

$p(heta,y)pprox { ilde p}_{ t LA}(heta,y) = rac{p(y,x, heta)}{{ ilde p}_{ t C}(x\,|\, heta,y)}ig|_{x=\hat x(heta)},$

where $ilde{p}_{ extsf{G}}(x\,|\, heta,y) = \mathcal{N}(x\,|\,\hat{x}(heta),\hat{H}(heta)^{-1})$

- Use automatic differentiation via CppAD in TMB
- Adaptive Gauss-Hermite Quadrature (AGHQ) perform quadrature over the hyperparameters

$$\int_{\Theta} p_{\mathtt{LA}}(heta,y) \mathrm{d} heta pprox |L| \sum_{z \in \mathcal{Q}(m,k)} p_{\mathtt{LA}}(\hat{ heta} + Lz,y) \omega(z),$$

where $m = \dim(\theta)$ and the Gauss-Hermite quadrature rule $z \in \mathcal{Q}(m,k)$ with weights $\omega: \mathcal{Q} \mapsto \mathbb{R}$ and k points per dimension is adapted (Figure 2) based upon

- \circ The mode $\hat{ heta} = ext{argmax}_{ heta \in \Theta} p_{ t LA}(heta, y)$
- \circ A matrix decomposition $LL^ op = -\partial_ heta^2 \log p_{\mathtt{LA}}(heta,y)|_{ heta=\hat{ heta}}$
- PCA-AGHQ To integrate over large spaces, use the spectral decomposition $L=E\Lambda^{1/2}$ and keep only the first s < m principal components

3. Application to Malawi

 Malawi is a relatively small country but still has latent field $\dim(x)=467$ and hyperparameters $\dim(heta)=24$

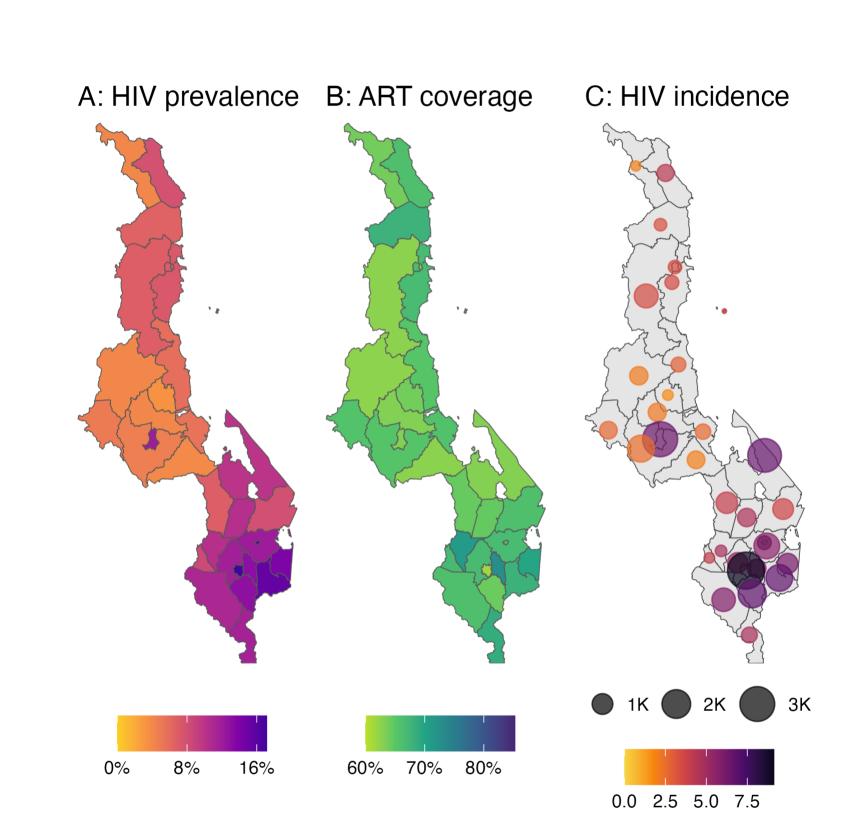


Figure 3: District-level model outputs for adults 15-49.

- Run three methods: 1. TMB (baseline, 54 secs), 2. PCA-AGHQ (new, 1 hour), 3. NUTS (gold-standard, 3.3 days)
 - \circ For PCA-AGHQ k=3 and s=8 chosen using Scree plot to explain ~90% of variance
 - For NUTS 4 chains of 100,000 thinned by 40 were required for good diagnostics e.g. all $R < 1.025\,$

Figure 4: PCA-AGHQ moderately improves the posterior mean and substantially improves the posterior standard deviation

 PCA-AGHQ improves latent field point estimates (Figure 4) and distributional quantities like the Kolmogorov-Smirnov (KS, Figure 5) test statistic (-9% on average)

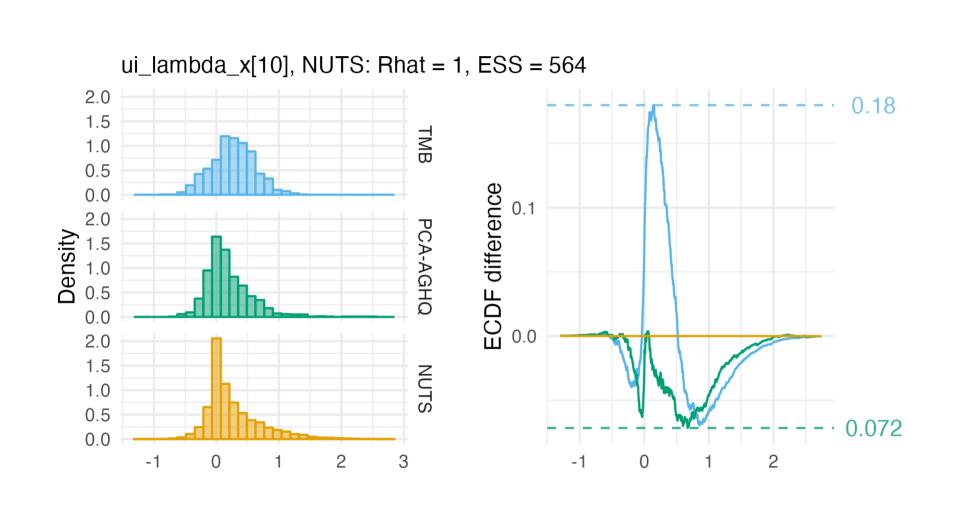


Figure 5: KS test demonstration.

- Naomi can be used to assess probabilities targets have been met e.g. 90% of those who know their HIV status are on ART ("second 90")
- Though PCA-AGHQ is better (-16% RMSE), both TMB and PCA-AGHQ are biased (Figure 6)

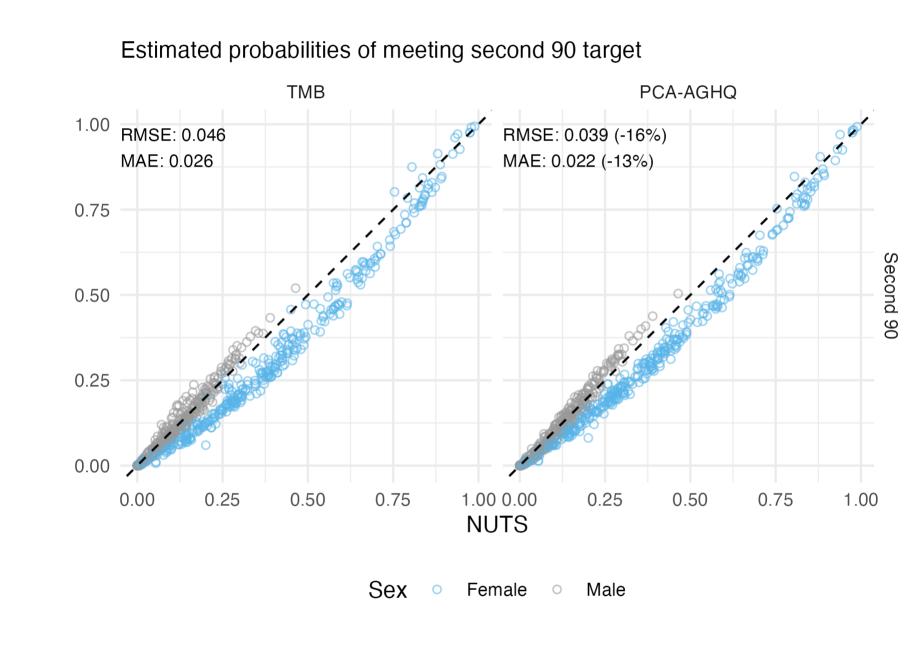


Figure 6: PCA-AGHQ moderately improves the second 90 bias.

4. Future directions

- Can we do better than moderate improvements?
- Especially for the quantities of policy interest
- Laplace marginals with matrix algebra approximations (Wood 2020) to speed up calculations
- Further methods for allocation of effort to "important" dimensions of hyperparameter grid

Contact

- </> github.com/athowes/naomi-aghq
- nathowes.github.io
- ☑ ath19@ic.ac.uk

Funding AH was supported by the EPSRC and Bill & Melinda Gates Foundation. This research was supported by the MRC Centre for Global Infectious Disease Analysis.

References

Eaton, Jeffrey W., Laura Dwyer-Lindgren, Steve Gutreuter, Megan O'Driscoll, Oliver Stevens, Sumali Bajaj, Rob Ashton, et al. 2021. "Naomi: A New Modelling Tool for Estimating HIV Epidemic Indicators at the District Level in Sub-Saharan Africa." Journal of the International AIDS Society 24 (S5): e25788.

Kristensen, Kasper, Anders Nielsen, Casper W Berg, Hans Skaug, Bradley M Bell, et al.

2016. "TMB: Automatic Differentiation and Laplace Approximation." Journal of Statistical Software 70 (i05). Monnahan, Cole C, and Kasper Kristensen. 2018. "No-U-turn sampling for fast Bayesian

inference in ADMB and TMB: Introducing the adnuts and tmbstan R packages." PloS One 13 (5): e0197954. Stringer, Alex. 2021. "Implementing Approximate Bayesian Inference using Adaptive

Quadrature: the aghq Package." arXiv Preprint arXiv:2101.04468. Stringer, Alex, Patrick Brown, and Jamie Stafford. 2022. "Fast, Scalable Approximations to Posterior Distributions in Extended Latent Gaussian Models." Journal of Computational

and Graphical Statistics, 1–15. Wood, Simon N. 2020. "Simplified integrated nested Laplace approximation." Biometrika 107 (1): 223–30.