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Consider unobserved latent random effects x € R and parameters @ € R™.} Let £(x,0) = —log p(y | x, 0)
be the negative joint log-likelihood. In TMB, the user writes C++ code to evaluate this negative log-likelihood
function £. A standard maximum likelihood approach is to optimise

L) 2 [ plylx.6)dx = | exp(~(x.6))dx &

with respect to € to find the maximum likelihood estimator (MLE) 6. Taking a superficially more Bayesian
approach than above, instead of ¢, the user may instead write a function to evaluate the negative joint
penalised log-likelihood given by

f(x,0) = —logp(y | x,0)p(x,0) = {(x,0) — log p(x, 8), (2)
equivalent up to an additive constant to the negative log-posterior.

f(x70) = 7logp(Ya X, 0) = 710gp(X70 | Y) - Cv (3)

where C' = log p(y) is the log evidence. Using f in place of ¢, then the penalised likelihood is proportional to
the posterior marginal of 8

Li(6) 2 [ exp(~fx 0))dxx [ pix6]y)ix=p(0]y). @

Integrating out the random effects directly, as in Equation 4 above, is usually intractable because x is
high-dimensional, so Kristensen (2016, Equation 3) use a Laplace approximation L} (0) based instead upon
integrating out a Gaussian approximation to the random effects. This Laplace approximation is analogous to
the INLA approximation p(€]y).
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Inference proceeds by optimising L’} (@) via minimisation of

~1og L}(6) o 5 log det(Q(0)) + (4(0). 6). )

where o< is used to mean proportional up to an additive constant. The parameters of the Gaussian
1"

approximation, are found in terms of f via [1(6) = argminy f(x,0) and Q(8) = f”, (f1(0),8) and must be
recomputed for each value of 8. Obtaining f1(0) is known as the inner optimisation step.

IKristensen (2016) use the notation u for random effects and @ for parameters. We aim for consistency with Section ?7?.



