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Consider unobserved latent random effects x ∈ Rn and parameters θ ∈ Rm.1 Let ℓ(x, θ) ≜ − log p(y | x, θ)
be the negative joint log-likelihood. In TMB, the user writes C++ code to evaluate this negative log-likelihood
function ℓ. A standard maximum likelihood approach is to optimise

Lℓ(θ) ≜
∫
Rn

p(y | x, θ)dx =
∫
Rn

exp(−ℓ(x, θ))dx (1)

with respect to θ to find the maximum likelihood estimator (MLE) θ̂. Taking a superficially more Bayesian
approach than above, instead of ℓ, the user may instead write a function to evaluate the negative joint
penalised log-likelihood given by

f(x, θ) ≜ − log p(y | x, θ)p(x, θ) = ℓ(x, θ) − log p(x, θ), (2)

equivalent up to an additive constant to the negative log-posterior.

f(x, θ) = − log p(y, x, θ) = − log p(x, θ | y) − C, (3)

where C = log p(y) is the log evidence. Using f in place of ℓ, then the penalised likelihood is proportional to
the posterior marginal of θ

Lf (θ) ≜
∫
Rn

exp(−f(x, θ))dx ∝
∫
Rn

p(x, θ | y)dx = p(θ | y). (4)

Integrating out the random effects directly, as in Equation 4 above, is usually intractable because x is
high-dimensional, so Kristensen (2016, Equation 3) use a Laplace approximation L⋆

f (θ) based instead upon
integrating out a Gaussian approximation to the random effects. This Laplace approximation is analogous to
the INLA approximation p̃(θ | y).

f ′′
xx(µ̂(θ), θ) = − ∂2

∂x2 log p(y, x, θ)
∣∣∣
x=µ̂(θ)

= − ∂2

∂x2 log p(x | θ, y)
∣∣∣
x=µ̂(θ)

= Q̂(θ).

Inference proceeds by optimising L⋆
f (θ) via minimisation of

− log L⋆
f (θ) ∝ 1

2 log det(Q̂(θ)) + f(µ̂(θ), θ), (5)

where ∝ is used to mean proportional up to an additive constant. The parameters of the Gaussian
approximation, are found in terms of f via µ̂(θ) = arg minx f(x, θ) and Q̂(θ) = f ′′

xx(µ̂(θ), θ) and must be
recomputed for each value of θ. Obtaining µ̂(θ) is known as the inner optimisation step.

1Kristensen (2016) use the notation u for random effects and θ for parameters. We aim for consistency with Section ??.
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