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1 Dr. Christopher Paciorek

Thank you for the thorough discussion of the thesis. Both during the defense and in the
provided corrections. I have addressed your suggested corrections item by item as follows.

1.1 General comments

1.1.1 Chapter 4

I'd like to see some more context relating the potential shortcomings to the public
health setting (you have a bit of this in Section 4.1.3). For a public health analyst,
when might they be most concerned about using the Besag model? What kinds of
areal arrangements/neighborhood structures/types of data might be most prone to
concern? E.g., one might be concerned about cases like Canadian provinces where
their populations are so concentrated right near neighboring US states and most of the
provincial area is sparsely populated.

In Section 4.1.3. I have modified the text as follows:

The Besag model was originally proposed by Besag, York, and Mollié (1991) for
use in image analysis. In this setting, areas correspond to pixels arranged in a
regular lattice structure. In an image, the data point at each pixel can be thought
of as an average of the intensity or colour over the space represented by the pixel.

Since it’s original proposal, the Besag model has seen wider use. However, for
small-area estimation of HIV, the spatial structure corresponds to administrative
units. These administrative units may have a more irregular spatial structure than
a lattice. Furthermore, data points may not come about by uniform averaging
over a space. For example, population density may vary across the area.

And as we discussed, I'd like for you to see if you can drill down into the localized
results of the simulation to give some insight into where the smoothing is sub-optimal in
the simulations. Relatedly would you expect the features highlighted by your vignettes
to occur in reality in public health settings?

As T note in Section 4.5.2, I am concerned that the sample size may be insufficient to draw
reasonable conclusions based on the localised simulation results:

With refinements to the sample sizes used, these area-specific measures of perfor-
mance could enable more nuanced conclusions about the use of spatial random
effect models.

I would like to prepare this chapter for publication at some point, in which case I would
increase the sample size for the simulation study (as I also note in Section 4.3.4.1 regarding
the vignette geometries). One idea I have is to extract features of each area, then look to
“model” (or simply look for correlations with) the localised area-specific scores based on these



features. I believe that this could be an interesting approach and help to answer practical
questions.

1.1.2 Chapter 5

I'd like to see the chapter initially clearly lay out the overall goal, the quantitative
representation of that, the various pieces of the analysis and how they fit together,
and the data available, as well as what components you can estimate uncertainty for.
In particular the notion of "reaching" the population needs to be clearly spelled out
initially. And as we discussed, please make clear how prevalence is needed.

I have updated Section 5.1 giving the background for Chapter 5 as follows:

In this chapter, I used a Bayesian spatio-temporal model (Section 5.3) of be-
havioural data from household surveys (Section 5.2) to estimate HIV risk group
proportions. To then estimate risk group specific HIV prevalence and HIV in-
cidences (Section 5.4), I combined the proportion estimates with population
size, HIV prevalence and HIV incidence estimates, as well as risk group specific
HIV incidence rate ratios, and HIV prevalence rate ratios. Finally, by ordering
district, age, risk group strata by HIV incidence, I estimated an upper bound
for the number of new HIV infections that could be averted under different risk
prioritisation strategies (Section 5.4.3).

Model 5.11 omits various interactions. Focusing on the category-area-age interaction,
which seems like the omitted interaction most likely to have substantial variation in
reality, some effort to come up with some "residual” type diagnostic to assess model
mis-specification in this regard would be helpful (e.g., perhaps some sort of variogram
type analysis of some sort of age-group specific "working residuals" to borrow a GLM
framing). Or you mentioned fitting the model with the interaction for one country. If
that is not too burdensome that would also be a reasonable approach here.

- 7

The linear predictor used for the (base) multinomial logistic regression model was
Nita = ita + Br + ik + Qacfik + Wik + Vi (1)

This equation does contain age-country-category interactions ay,fix, but you are right to
point out that age-district-category interactions, call them say &, are omitted. A model
containing the effects £,;; would be likely to cause computational difficulties in the full joint
model of all countries. However, restricting attention to one country, Malawi, I was able to
fit the extended model

Nita = eita + Ek + <c[z]k + Aaclilk + gaik + Wik + Vik- (2)
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Indicator: Not sexually active; Survey: MWI2016PHIA
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Figure 1: A comparison of survey raw risk group estimates to the base (Equation (1)) and
extended (Equation (2)) model specifications for the “not sexually active” risk group.
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Figure 2: A comparison of survey raw risk group estimates to the base (Equation (1)) and
extended (Equation (2)) model specifications for the “one cohabiting partner” risk group.
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Figure 3: A comparison of survey raw risk group estimates to the base (Equation (1)) and
extended (Equation (2)) model specifications for the “non-regular or multiple partner(s) +”

risk group.



Table 1: The DIC, WAIC, and CPO values for the base (Equation (1)) and extended (Equation
(2)) models. The standard error multiplied by 1.96 to give a 95% confidence interval is shown
in brackets.

Model Country DIC WAIC CPO

Base Malawi  5530.6 (185.8) 5762.3 (215.5) 343.7 (21.3)
Extended Malawi  5381.2 (170.4) 5538.2 (194.8) 336.8 (20.7)

Figures 1, 2, and 3 show risk group estimates from the survey as compared with posterior
means from the base (Equation (1)) and extended (Equation (2)) models. Although the base
and extended model posterior means are, on the whole, very similar, there are indeed small
differences. In the extended model, the proportion of variance explained by the age-country-
category interactions was 2.7% reflecting this small difference. Results for each of the DIC,
WAIC, and CPO model comparison metrics (Table 1) also show that the extended model is
preferred in this instance over the base model, though not significantly.

Although restricted to Malawi, these results indicate that inclusion of age-district-category
random effects could result in a marginal improvement to the model’s fit more broadly. As
such, I think it would be beneficial to investigate this issue further, and have passed these
findings along to the team continuing to work on the risk group model.

The distinct differences between the CPO and information criteria (IC) results (and
the very structured pattern in the surprising IC results) suggest the possibility of a
bug somewhere, as we discussed. Getting the observation-specific values from INLA
might help to better understand this.

Thank you for this suggestion. As discussed, I agree with you that the mismatch between
the models favoured by the CPO and IC is surprising and suggestive of a possible bug.
To investigate this issue, I began by refitting the four models on a subset of countries for
computational convenience. In this case, the observed surprising pattern did not occur, and
that both the CPO and IC agreed:

model dic dic_se waic waic_se Cpo cpo_se
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 Model 1 40597. 191. 41763. 227. 2098. 22.6
2 Model 2 40445. 192. 41592. 229. 2232. 22.8
3 Model 3 40598. 191. 41763. 227. 2098. 22.6
4 Model 4 40446. 192. 41592. 229. 2232. 22.8

Following this result, I refit the four models on all countries, which reproduced the strange
result in the thesis:

model dic dic_se waic waic_se Cpo cpo_se
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 Model 1 100790. 300. 103834. 358. 5433. 35.9



2 Model 2 101598. 317. 105074. 383. 5661. 36.0
3 Model 3 100789. 300. 103834. 358. 5432. 35.9
4 Model 4 101598. 317. 105075. 383. 5661. 36.0

To drill down further, I grouped the local observation-specific values by survey and recomputed
summary statistics. In 42 of 46 surveys, the CPO value was higher for Model 4 than Model
3. Further, in 34 of the 46 surveys, the DIC value was lower for Model 4 than Model 3. That
is to say, for most surveys, the CPO and DIC agreed. There were 8 surveys that the CPO
and DIC disagreed about:

"CMR2017PHIA" "MWI2015DHS" "NAM20OODHS" "NAM2013DHS"
"TZA2007AIS" "TZA2010DHS" "TZA2012AIS" "ZMB20O7DHS"

There were very large differences in the DIC values for three of the four surveys in Tanzania
specifically. Hence, the strange results are due to differences in how the CPO and DIC (and
WAIC) rank performance of the models in Tanzania. This is a confusing finding, but supports
the choice of Model 4 over Model 3. I have clarified this by noting in the caption for Figure
5.4 that:

The relatively poor DIC and WAIC performance of Besag random effects was due
to outlying values of these criteria for three of four surveys in Tanzania, and as
such may be erroneous.

Further investigation of this issue could look to disentangle the large DIC difference in
Tanzania further, including by district, age, and sex, as the extent of the difference is
suggestive to me of something suspicious (rather than merely a typical difference of opinion
between two measures).

An additional check I performed was to assess the values of cpo$failure. As discussed on
the R-INLA website FAQ, a value of cpo$failure[i] > O for observation i indicates the
assumptions required for calculation of the CPO are violated, and that therefore results
may be inaccurate. For all models, 30597 observations had cpo$failure[i] == 0 and 3
observations had cpo$failure[i] == 1. As these three observations cannot have impacted
the CPO results significantly (which are consistent across the surveys) I concluded that
inaccurate CPO computation was not part of the issue here.

1.1.3 Chapter 6
Chapter 6 extends standard INLA computation in two ways. For the first, I'd like to
see more clarity in how this differs from the Stringer et al. (2022) approach (i.e., that
you go beyond the Gaussian mixture over the quadrature points, as we discussed in the
defense) and the details of the software implementation (e.g., giving an overview in the
chapter describing what someone would need to do to make use of your code/approach).

. 7

The Stringer, Brown, and Stafford (2022) approach is that of Section 6.1.3.1. It is similar to
the inla::inla with method = "gaussian". The novel approach implemented in Section
6.2 is similar to inla::inla with method = "laplace".
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I have clarified this point in the following text:

First, a universally applicable implementation of INLA with Laplace marginals,
where automatic differentiation via TMB is used to obtain the derivatives required
for the Laplace approximation. For users of R-INLA, the Stringer, Brown, and
Stafford (2022) approach is analogous to method = "gaussian", while the ap-
proach newly implemented in this chapter is analogous to method = "laplace".
Section 6.2 demonstrates the implementation using two examples, one compatible
with R-INLA and one incompatible.

Section 6.2 gives an overview of my implementation, and all code for the for the analysis is
available at athowes/thesis and athowes/naomi-aghq. I agree that a more user friendly
implementation of the method would be of benefit. This is something I highlight as future
work in Section 7.2, noting that ideally the method would be included in the aghq R package
or similar:

Although suitable for early stage research, wider adoption of the INLA imple-
mentation developed in Chapter 6 would be enhanced greatly by improvements
to its speed and usability. The most important speed enhancement would come
from using the simplified approximation to the Laplace marginals developed by
Wood (2020). Although the naive implementation used in this thesis is viable for
integrating Laplace marginals over a small number of hyperparameter quadrature
nodes, such as the 32 = 9 nodes used Sections 6.2.2 and 6.2.1, it becomes pro-
hibitively slow for larger numbers. Usability would be improved by providing the
method as a part of statistical software, likely via the aghq package. The primary
difficulty which would have to be overcome to do so is that the random argument
of TMB: :MakeADFun does not allow indexing.

I also discuss this in Section 6.6.3.6 within the chapter.

As we discussed in the defense, I'm concerned about any case where one draws from
marginals, implicitly assuming no dependence, either at the hyperparameter level or
the latent process level, and then does inference on a derived quantity that depends on
more than one input. You should be clear anytime you do this that this is problematic
(and try to avoid as much as possible).

\ J

As discussed, I agree that this is a reasonable concern. There are two places in the thesis that
I calculate posterior estimates for derived quantities that are a function of multiple elements
of the latent field. These are:

1. In Section 6.2.2 where I use conditional Gaussian field simulation to obtain inferences
about Loa loa prevalence over a fine spatial grid based on inferences at the 190 sampled
villages.

2. In Section 6.5.5 where I calculate functions of the exceedance probabilities for ART
coverage and HIV incidence of the Naomi model in Malawi.

In the first case, I found (Figure 6.11 and Figure 6.12) that the Laplace marginals approach



(which suffers from the concern raised) outperforms the Gaussian marginals approach (which
does not) as compared with NUTS (which also takes posterior dependence into account). In
the second case, I am using the Gaussian marginals approach (mixture of Gaussians) hence
this is not a concern. As such, I have added the following sentence to Section 6.2.2:

This improvement is even given that draws from the Laplace marginals do not take
posterior dependences into account like the draws from the mixture of Gaussians
used to construct the Gaussian marginals.

Relatedly, assuming I'm understanding correctly, there is an important tradeoff between
using Laplace marginals for improved accuracy for latent marginals and using the
Gaussian mixture over the quadrature points, which allows one to make draws and do
inference on any derived quantity in a way that takes account of posterior dependence
between and amongst hyperparameters and latent process values. If that’s the case,
I think it’s worth pointing this out and discussing when one can use the Laplace
marginals in a public health context and when one might need to use the Gaussian
mixture.

. 7

This is correct. The recent work of Chiuchiolo, Niekerk, and Rue (2023) aims to extend
R-INLA to use Laplace approximations to estimate subsets of the latent field, beyond merely
marginals. I have added the following note to Section 6.1.3.2:

An important downside of the Laplace approach is that posterior dependences
between posterior marginal draws are not preserved, unlike in the mixture of
Gaussians case (Equation (6.15)). Recent work using Gaussian copulas (Chiuchi-
olo, Niekerk, and Rue 2023) aims to retain the accuracy of the Laplace marginals
strategy while obtaining a joint approximation.
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1.2 Minor comments

1.2.1 Chapter 2

4: "develop into a stage" -> "Infection with HIV can'

Thank you! Changed to:

If untreated, infection with HIV can develop into a more advanced stage known
as acquired immunodeficiency syndrome (AIDS).

[ 6: "to result a reduction’

Thank you! Changed to:

found complete surgical removal of the foreskin to result in a reduction

[ 11: "Both DHS and PHIA surveys collecting"

Thank you! Changed to:

Both DHS and PHIA surveys collect demographic, behavioural, and clinical
information

[ 12: individual disclosure: error may come from them not knowing status

Good point! T have added the sentence:

Furthermore, individuals may be unaware of their HIV status.

[ 14: "UNAIDS process"

This stub has been been corrected as follows:

Indeed, careful validation of data by country teams is a crucial part of the yearly
UNAIDS HIV estimates process.

1.2.2 Chapter 3

16 (and elsewhere): Please look up usage of "that" vs. "which" so you can join me in
the grammar police. "Models which do not produce' -> "Models that do not produce'

Thank you for the pointer! I have fixed this issue and look forward to joining the good fight.

Fig 3.1: I suggest that you also show the likelihood.
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Yes this is a good suggestion, I have now included the likelihood in Figure 3.1 (Figure 4).
Figure 6.1, demonstrating the Laplace approximation, has also been updated to include the
likelihood.

04
. Prior
. Likelihood
/—\ Posterior
0.2
True value
0.0

Figure 4: The updated version of Figure 3.1 as suggested.

17: Beyond just p(y) even if you know the full form of p(phily) what do you do with
it in non-trivial dimensions? You have to be able to either draw from it or estimate
expectations of interest. the issue is rather broader than just the unknown normalizing
constant.

Good point! I have added the sentence:

Further, even given a closed form expression for the posterior distribution, if ¢ is
of moderate to high dimension, then it is not obvious how to evaluate expressions
of interest, which usually themselves are integrals, or expectations, with respect
to the posterior distribution.

19. You haven’t defined ’convergence’ when you dive into diagnostics.

Good point! I have altered the text to read:

After running an MCMC sampler, it is important that diagnostic checks are used
to evaluate whether the Markov chain has reached its stationary distribution. If
so, the Markov chain is said to have converged, and its samples may be used to
compute posterior quantities. Though it is possible to check poor convergence in
some cases, we may never be sure that a Markov chain has converged, and thus
that results computed from MCMC will be accurate.
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21. I'd frame this as deterministic approximations need to focus on approximating
expectations of interest. I think of Laplace as approximating an integral over part of
parameter space (often > random effects’) to be able to work with a smaller-dimensional
space, such as for maximization.

Thank you for the comment. In Chapter 6, I refer to a Laplace approximation over part of
the parameter space as the marginal Laplace approximation. For this reason, unless otherwise
stated, by “the Laplace approximation” I mean over all parameters.

[ 23. "data is" -> "data are" (also p 66 and perhaps elsewhere) ]

Thank you! I have corrected to “data are” in this instance and elsewhere in the thesis.

30. You distinguish ELGM from LGM with having defined eta for LGM or been explicit
about 1:1 relationship of x and y.

Good point. In an LGM, it is that there is a one-to-one relationship between y and 1. I have
added the sentence:

In an LGM, like the more general GLMM case as given in Equation (3.6), there
is a one-to-one correspondence between observations y; and elements of the linear
predictor n;.

Sec 3.4: worth commenting on additivity of these measures that treat each obs as a
unit of information given you are in a spatial setting.

Good point. I have added the paragraph:

Equation (3.11) is additive, and treats each observation as an independent unit
of information. Special care is therefore required in applying cross-validation
techniques to dependent (Section 3.2.1.2) spatio-temporal data. For example,
Biirkner, Gabry, and Vehtari (2020) and Cooper et al. (2024) use “leave-future-out”
(LFO) cross-validation in the time-series context. Similarly, in Chapter 4 T apply
a spatial-leave-one-out (SLOO) cross-validation scheme.

[ 35. (3.30) should be for map;. ]

Thank you for spotting this! Corrected.

[ 37. "difficultly” ]

Corrected to:
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problem difficulty

[ 37. "arrived at using by" ]

Corrected to:

arrived at by estimating the variance of

1.2.3 Chapter 4

[ 41. Might be worth including the variance piece raised to the power ‘n-c'. ]

n—nc

I have added the factor 7, > to Equation 4.3. Initially I excluded this factor as the primary
intention was to demonstrate that p(u) is a function of the pairwise differences and thus
improper.

41. "recommended against": passive, and by who?

I have altered the text to be less passive and more direct about the citation:

Directly using the Besag model as described in Section 4.1.1 has several practical
limitations in applied settings. To overcome these limitations, Freni-Sterrantino,
Ventrucci, and Rue (2018) recommend three best practices:

[ 42. Why is unit variance correct? ]

Yes that’s a good point. What I mean to say is that the singletons have unit variance in the
“structure matrix” sense. I have corrected the text to read that p(u;) ~ N(0,7,1).

[ 47. 1, and 7, are not orthogonal - what does this mean? ]

I use this terminology to mean that the posteriors for 7, and 7, are likely to be correlated.
See Figure C.8 and Figure C.9 in Appendix C for an example, showing that the BYM2
parameterisation overcomes this issue. This appears to be inline with use of the term by, say,
Cox and Reid (1987). It also seems to be standard practise within the R~-INLA community
and adjacent.

48. Is convolution the right term here?

I have altered the text to use the term “convolved random effects” following use of this
terminology by Morris et al. (2019). This term seems inline with a convolution being a linear
combination of random variables (IID and structured random effects, in this instance).
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55: what is meant by "model is implemented in arealutils"?

arealutils is an R package where I implemented the models in this chapter. I have updated
the text to read:

in the arealutils R package (Howes 2023)

56: need citation for v being hard to estimate

Although I found references (Warnes and Ripley 1987; Zhang 2004; Williams and Rasmussen
2006; Anderes 2010; Karvonen and Oates 2023) supporting difficulties estimating one or
multiple hyperparameters for spatial models (including using the Matérn kernel) I did not
find a reference to directly support v being difficult to estimate in all cases. (For example, I
did find that Williams and Rasmussen (2006) note that beyond v = 7/2 [i.e. quite smooth]
then it’s difficult to estimate v from “finite noisy training samples”) My intuition is that the
observations in Chapter 4 being from a binomial distribution would further the case that v
would be difficult to estimate, even for v < 7/2. Even so, I have reduced the authority of
this claim to read:

We fixed the smoothness hyperparameter v to 3/2 to avoid concerns regarding
the joint identifiability of the smoothness and lengthscale hyperparameters.

[ 56: have Li vary with size? ]

The L; did not vary with the size of the area. A fixed number were used for each area.

[ 56: effect -> affect ]

Change made, thank you!

[ 57: "and the calibration" ]

I have altered the text to read:
and the probability integral transform (PIT; Dawid (1984)) values

57: What parameter is shown in Figs 4.7-4.9 - it’s not clear you're assessing the latent
process values. And in that case you should be clear the CRPS is averaged over
locations.

Good points! T have altered these three captions. As an example, in the case of Figure 4.7,
the caption now reads:
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The mean CRPS in estimating p; and its standard error for each inferential model
and simulation model on the grid geometry (Panel 4.6E). The mean value averages
over both areas and simulation runs.

[ 9: Explain that mean CRPS is mean over the simulations. ]

As above, this is a good point! T have added the sentence:

The mean values are an average over both the number of areas in each geometry
and the number of simulations run.

[ 63: Table 4.4 has no standard errors. ]

Standard errors were omitted from Table 4.4 due to space constraints. I have removed the
incorrect text from the Table 4.4 caption, and added a note to look at Figure 4.12 for the
standard errors.

64: "resulted wide"

Changed to:

resulted in wide

[ 64: surprisingly ]

Changed, thank you!

67: "This chapter used of area-level models to for point-level data throughout'. I can’t
parse this. You can only use point level model if have point level data.

I have altered the sentence as follows:

This chapter used area-level models to for data which arises by aggregation of
point-level data.

67: "measures are disaggregated by area' - not sure of the point here.

I have altered the text to clarify the point:

Additionally, the measures used in this study were computed and presented by
individual area. With refinements to the sample sizes used, these area-specific
measures of performance could enable more nuanced conclusions about the use of
spatial random effect models.
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1.2.4 Chapter 5

[ 71: FSW is not defined in Table 1 caption. ]

Changed to “female sex workers (FSW)”.

[ 71: In Table 1 why does High risk group IRR not vary with local incidence? ]

The conceptual model underpinning this decision was to frame the “High” risk group as a
part of the general population at higher risk and the “Very High” risk group as a concentrated
epidemic subpopulation. In reality IRR is likely to vary by local incidence for the “Very
High” risk group as well, and as such this is a fair critique. Practically speaking, the ALPHA
network data used to inform the “High” IRR has quite little geographic variation.

71: Purpose of Table 1 is not clear. Nor how IRR is to be used.

I have included an additional clause that the IRR is “used to calculate HIV incidence” (by
risk group).

Tables sometimes appear earlier than they should (e.g., 5.1 and 5.2).

I have altered the position of Tables 5.1 and 5.2 to appear later.

~ a

77: Table 5.2: ¢;, should be w;.

Good spot! Thank you, fixed.

[ 80: Mention country-specific vs single models earlier. ]

The model is fit jointly to all countries. My use of the term “country-specific” in the sentence
“to capture country-specific proportion estimates for each category” refers to random effects
rather than models.

[ 82: T would say clearly that model structure for ¢;, is discussed next. ]

I have altered the text to read:

As all such surveys occurred in the years 2013-2018 (Figure 5.2) I assumed no
dependence on time, hence omission of the index t. Model specification for the
linear predictor n;, is discussed in Section 5.3.2.1 to follow.

85: First paragraph of 5.3.3 is a bit hard to follow.
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I have altered the text to read:

Domain experts do not consider having had sex “in return for gifts, cash or
anything else in the past 12 months” sufficient to constitute sex work. For
this reason, I adjusted the estimates obtained based on the transactional sex
survey question to match alternatively obtained age-country FSW population size
estimates. Taking this approach retained subnational variation informed by the
transactional sex survey question.

86: The bio-marker survey data and disaggregation model is unclear. How are risk
groups known for individuals in the survey?

I have clarified this model as follows:

To disaggregate HIV prevalence, I began by estimating HIV prevalence log
odds ratios log(ORy) relative to the general population. To do so, I began by
calculating age, country, and risk group specific (as well as general population)
HIV prevalence p..; using bio-marker survey data from all 46 surveys included
in the risk group model (Section 5.2.1). I then fit a logistic regression model,
with indicator functions for each risk group, and an indicator for being in the
general population. The fitted regression coefficients in this model Sy correspond
to log odds log pr — log(1 — p). The required log odds ratios may then be easily
obtained by taking the difference in odds ratios.

88: Section 5.4.3 is hard to understand. I don’t understand how it relates to 5.4.2.
"Reach" is not clearly defined nor is it clearly discussed how it is quantified based on
the various modeling pieces.

Section 5.4.3 relates to Section 5.4.2 because it uses I,,; which is calculated in Section 5.4.2.
I have rewritten Section 5.4.3 to make this clearer and address these comments.

91: Not clear what the quantities are in the statement about "in most districts adolescent
girls aged 15-19 were not sexually active'. Is this an across-district or within-district
quantity?

You're right that this sentence didn’t make sense. I've rewritten it to clarify as follows:

In the median district, 57.9% of adolescent girls 15-19 were not sexually active
(95% credible interval [CI] at the district-level 27.7-79.7).

95: does the approach presented allow identification of actual people or just targeting
efforts to reach more such people collectively

The approach does not allow identification of actual people. This is an important limitation
of this analysis, which I discuss in Section 5.6.1 in the paragraph starting “The efficiency
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of each stratified prevention strategy depends on the ability of programmes to identify and
effectively reach those in each strata...”.

96: "Accounting for the 0% of new infections"?

Good spot, thank you! I have edited this sentence to remove this mistaken figure:

My analysis focused on females aged 15-29 years, and could be extended to
consider optimisation of prevention more broadly, accounting for new infections
among adults 15-49 which occur in women 30-49 and men 15-49.

1.2.5 Chapter 6

[ 106: Not sure what you mean by "log p(y|x,theta) is small". This is the likelihood... ]

I based this sentence on Blangiardo et al. (2013), which I have now cited.

[ 116: "in which, which" ]

Changed to:

in which, similar to extended latent Gaussian models

[ 122: "Method" in Table 6.1 a bit terse. ]

I have updated this column to be more specific about the first word referring to “latent field
marginals” and the second being “over the hyperparameters” (apart from for NUTS, which is
over the whole space).

122: Is "Gaussian, EB" the same as frequentist Laplace approx (up to hyperparameter
prior)? If so, probably worth saying.

Yes I believe it is, but I am not an expert in frequentist procedures.

130: Somewhat unclear how the quadrature is implemented, wrapped around the
TMB-based Laplace approximation. Is your code in R? (Sorry, this may be because I
didn’t have time to look through appendices.)

Yes my code is in R. All code for the thesis is available at athowes/thesis and for the
analysis in Chapter 6 at athowes/naomi-aghgq.
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131: Using same number of iterations with stan (full posterior, including latent values)
vs tmbstan (hyperparameters, much lower-dimensional space) seems odd.

Here T am using tmbstan with the default option laplace = FALSE. Hence the tmbstan
sampler is operating over the full space, just as the rstan sampler. As such, it’s reasonable
to use the sample number of iterations with both samplers.

132: Fig 6.7 is just grid/AGHQ), not EB? If so, why present EB method?

Yes that’s correct, and I have updated the caption of Figure 6.7 to make this more clear. (The
focus of this section of the chapter was to validate that my approach for implementing Laplace
marginals is correct (as compared to R-INLA). For that purpose, I focused on presenting
results for the methods with quadrature. Though you do raise a good point that the results
for EB should also be similar. Part of the reason to include EB methods was for teaching
purposes.)

S

132: Why surprising tmbstan faster than rstan - what are the different computations
involved - having to compute Laplace vs doing HMC over higher dimensional space.
I expect it would vary with I expect it would vary with hyperparameter and latent
dimensions.

J

It is surprising as they are running the same algorithm: HMC over the full space.

[ 136: "kridge" -> "krige"

Changed to gstat: :krige.

[ 137: "this" in "this difference" is unclear. ]

I have altered the text to read:

As B, was fixed then differences in approximation accuracy between the Gaussian
and Laplace approximations of ¢(s) are due only to differences in estimation of

u(s).

143: "survey weighting increases variance" - what about effect of increasing precision in
small strata? Are you talking about influence of complex survey design or somehow
about weighting scheme?

I believe the point is that use of any weighting scheme (aside from all weights being equal)
reduces the “effective sample size” of the data, thus all else equal increasing the variance of
estimates.

20



149: INLA uses CCD for d>2, right? Would this not work for this setting?

Yes, R-INLA does use central composite design (CCD) for integration over moderate dimensions.
I mention that R-INLA uses CCD for m > 2 in Section 6.1.4.1, illustrate CCD in Figure 6.4,
and mention that it would be of interest to compare PCA-AGHQ to CCD in Section 6.6.3.1.

151: (6.97) has ’d’ instead of 'm’

Agree! Fixed by swapping d to m.

154: "closet"

Changed to:

posterior contraction was very close to zero.

[ 154: Did you use MAP for theta when looking at Hessian eigenvalues? ]

I considered the spectral decomposition of the matrix I:IEAl. I have updated the text to replace
an incorrect usage of Hy,(01,) ™!, thank you for spotting this.

[ 156: "Figure 77"

Fixed, thank you.

156: "far fewer than full 24" - is this a problem?

This is a problem in the sense that it would ideal for the quadrature nodes used to show
some variability in all 24 dimensions. PCA-AGHQ does improve upon a naive product grid,
but is still far from ideal.

[ 156: "point estimates" "distributional quantities" - need "and" ]

Fixed, thank you.

[ 157: Need caption to describe the green ]

Thank you, I have updated this caption to read:

The grey histograms show the 24 hyperparameter marginal distributions obtained
with NUTS. The green lines indicate the position of the 6561 PCA-AGHQ nodes
projected onto each hyperparameter marginal. For some hyperparameters, the
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PCA-AGHQ nodes vary over the domain of the posterior marginal distribution,
while for others they concentrate at the mode.

165: What went wrong with tmbstan?

I imagine that this is in relation to “Preliminary testing of this approach, using tmbstan
and setting laplace = TRUE, did not show immediate success but likely could be worked
on.”. I do not know exactly what went wrong, and think that further study of the use of
the Laplace approximation within MCMC routines like HMC could be a fruitful direction
(indeed I remember discussing this at the BayesComp conference in 2023).
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2 Dr. Adam Sykulski

Thank you for providing a paper copy of the thesis annotated with suggested typographical
changes. I have made these changes, and additionally thoroughly proofread the thesis as

requested.
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