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Abstract

Progress towards ending AIDS as a public health threat by 2030 is not being
made fast enough. Effective public health response requires accurate, timely,
high-resolution estimates of epidemic and demographic indicators. Limitations of
available data and statistical methodology make obtaining these estimates difficult.
I developed and applied Bayesian spatio-temporal methods to meet this challenge.
First, I used scoring rules to compare models for area-level spatial structure with
both simulated and real data. Second, I estimated district-level HIV risk group
proportions, enabling behavioural prioritisation of prevention services, as put forward
in the UNAIDS Global AIDS Strategy. Third, I developed a novel deterministic
Bayesian inference method, combining adaptive Gauss-Hermite quadrature with
principal component analysis, motivated by the Naomi district-level model of HIV
indicators. In developing this method, I implemented integrated nested Laplace
approximations using automatic differentiation, enabling use of this algorithm
for a wider class of models. Together, the contributions in this thesis help to
guide precision HIV policy in sub-Saharan Africa, as well as advancing Bayesian
methods for spatio-temporal data.
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1
Introduction

This thesis is about applied and methodological Bayesian statistics. It is applied

and methodological in that the primary concern is real-world questions and the

means to answer them. The statistical approach is Bayesian because probability

theory is used to arrive at conclusions based on models for observed data.

The applied focus of this thesis is in obtaining the strategic information needed

to plan the response to the HIV (human immunodeficiency virus) epidemic in

sub-Saharan Africa (SSA). Over 40 years since the beginning of the epidemic,

HIV is the largest annual cause of disability adjusted life years (DALYs) among

non-infants in SSA [Global Burden of Disease Collaborative Network (2019); Figure

1.1]. Quantification of the epidemic using statistics is a crucial part of the public

health response. Effective implementation of HIV prevention and treatment requires

strategic information. However, producing suitable estimates of relevant indicators

is complicated by a range of statistical challenges.

The data used were gathered in national household surveys or routinely collected

from healthcare facilities providing HIV services. An important feature of these data

are the location and time at which observations were recorded. Spatio-temporal

data have important recurring commonalities across a diverse range of application

1



Introduction

Figure 1.1: HIV is the largest cause of annual DALYs among individuals aged >1 year
in SSA (Global Burden of Disease Collaborative Network 2019). One DALY represents
the loss of the equivalent of one year of full health, and is calculated by the sum of years
of life lost and years lost due to disability. Weights used to account for disability vary
between 0 (full health) and 1 (death) depending on the severity of the condition.

settings. The work conducted in this thesis uses and aspires to contribute to

techniques from spatio-temporal statistics.

Computation is an essential part of modern statistical practice. Each project in

this thesis, and the thesis itself, is accompanied by R (R Core Team 2022) code,

hosted on GitHub at https://github.com/athowes. To facilitate reproducible

research, the R package orderly (FitzJohn et al. 2023) was used to structure

code repositories.

1.1 Chapter overview

This thesis is structured as follows:

• Chapter 2 provides an overview of the HIV/AIDS epidemic and describes the

challenges faced by surveillance efforts.

• Chapter 3 introduces the statistical concepts and notation used throughout

the thesis, focusing on Bayesian modelling and computation, spatio-temporal

statistics, and survey methods.

2
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• Chapter 4: The prevailing model for spatial structure used in small-area

estimation (Besag et al. 1991) was intended to analyse a grid of pixels. In

disease mapping, areas correspond to the administrative divisions of a country,

which are typically not a grid. I used simulation and survey data studies to

evaluate the practical consequences of this concern.

• Chapter 5: Adolescent girls and young women are a demographic group at

disproportionate risk of HIV infection. The Global AIDS Strategy recommends

prioritising interventions on the basis of behaviour to prevent the most

new infections using the limited available resources. I estimated the size

of behavioural risk groups across priority countries to enable implementation

of this strategy. Additionally, I assessed the potential benefits of the strategy

in terms of numbers of new infections prevented. This work (Howes et al.

2023) was included in the UNAIDS (Joint United Nations Programme on

HIV/AIDS) Global AIDS Update 2022 and 2023.

• Chapter 6: The Naomi small-area estimation model (Jeffrey W Eaton et al.

2021) is used by countries to estimate district-level HIV indicators. First,

to allow for compatibility with Naomi, I implemented the integrated nested

Laplace approximations using automatic differentiation, opening the door to

a new class of fast, flexible, and accurate Bayesian inference algorithms. The

implementation was using models for a clinical trial of an epilepsy drug, and

for the prevalence of the parasitic worm Loa loa. Second, I developed an

approximate Bayesian inference method combining adaptive Gauss-Hermite

quadrature with principal components analysis. I applied these methods to

data from Malawi, and analysed the consequences of the inference method

choice for policy relevant outcomes.

• Chapter 7: Finally, I discuss contributions of the research, avenues for future

work, and some broader reflections.

Though chronological order is recommended, Chapters 4, 5 and 6 may be read

in any order, or as stand-alone studies, if preferred.
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2
The HIV/AIDS epidemic

2.1 Background

HIV is a retrovirus which infects humans. If untreated, infection with HIV can

develop into a more advanced stage known as acquired immunodeficiency syndrome

(AIDS). HIV primarily attacks a type of white blood cell vital for proper function

of the immune system. As a result, AIDS is characterised by increased risk of

developing opportunistic infections such as tuberculosis or Pneumocystis pneumonias,

which can result in death.

The first AIDS cases were reported in Los Angeles in the early 1980s (Gottlieb

et al. 1981; Barré-Sinoussi et al. 1983). Since then, HIV has spread globally.

Transmission occurs by exposure to specific bodily fluids of an infected person.

The most common mode of transmission is via unprotected anal or vaginal sex.

Transmission can also occur from a mother to her baby, or when drug injection

equipment is shared. Approximately 86 million people have become infected with

HIV, and of those 40 million have died of AIDS-related causes (UNAIDS 2023a).

An ongoing global effort has been made to respond to the epidemic. The

multifaceted response has been shaped by local communities, civil society organ-

isations, national governments, research institutions, pharmaceutical companies,

international agencies like the Joint United Nations Programme on HIV/AIDS
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Figure 2.1: Globally, yearly new HIV infections peaked in 1995, and have since decreased
by 59%. Yearly AIDS-related deaths peaked in 2004, and have since decreased by 68%
(UNAIDS 2023a). Much of the global disease burden is concentrated in eastern and
southern Africa, as well as western and central Africa. The unit “M” refers to millions.
The colour palette used in this figure, and throughout the thesis, is that of Okabe and Ito
(2008). It is designed to be colour-blind friendly, and the default used by Wilke (2019).

(UNAIDS), and global health initiatives such like the President’s Emergency Plan

for AIDS Relief (PEPFAR) and the Global Fund to Fight AIDS, Tuberculosis,

and Malaria (the Global Fund). As an indication of the scale of the response, the

investment of $100 billion by PEPFAR constitutes the “largest commitment by a

single nation to address a single disease in history” (U.S. Department of State 2022).

Implementation of HIV prevention and treatment has significantly reduced

the number of new HIV infections and AIDS-related deaths per year since their

respective peaks (Figure 2.1). The most significant evidence-based interventions,

in more or less chronological order of introduction, are described below:

• Condoms are an inexpensive and effective method for prevention of HIV and

other sexually transmitted infections (STIs) such as Chlamydia trachomatis,

Neisseria gonorrhoeae, syphilis, and Trichomonas vaginalis. Condom usage
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has increased significantly since 1990, which is estimated to have averted 117

million new HIV infections (Stover and Teng 2021). However, there remain

significant but difficult to close gaps in condom usage.

• Antiretroviral therapy (ART) is a combination of drugs which stop the virus

from replicating in the body. A person living with HIV who takes ART

daily can live a full and healthy life, transforming what was once a terminal

illness to a treatable chronic condition. Of the 39 million people living with

HIV (PLHIV) in 2022, around 76% were accessing ART. The number of

AIDS-related deaths, 21 million, estimated to have been averted by ART is

staggering (UNAIDS 2023b).

ART reduces the amount of virus in the blood and genital secretions. If

the virus is undetectable then there is significant evidence that it cannot be

transmitted sexually (M. S. Cohen et al. 2011; Broyles et al. 2023). For this

reason, in addition to providing life saving treatment, ART also operates

as prevention. Approaches to lowering risk of HIV transmission in this way

are referred to as treatment as prevention (TaSP). Particular efforts have

been made to provide pregnant women with ART to reduce the chance of

mother-to-child transmission (MTCT) (Siegfried et al. 2011).

• Voluntary medical male circumcision (VMMC) partially protects against

female-to-male HIV acquisition. Three landmark randomised control trials

(RCTs) (Auvert et al. 2005; Gray et al. 2007; R. C. Bailey et al. 2007) found

complete surgical removal of the foreskin to result in a reduction of HIV

acquisition in men by 50-60%. Based on this evidence, VMMC has been

recommended since 2007 by the World Health Organization (WHO) and

UNAIDS as a key HIV intervention in high-prevalence settings (WHO and

UNAIDS 2007). Scale up of VMMC across 15 priority countries between

2008 and 2019 is estimated to have already averted 340 thousand new HIV

infections, though the future number of new HIV infections averted is likely

to be much higher (McGillen et al. 2018; UNAIDS and WHO 2021).
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• Pre-exposure prophylaxis (PrEP) and post-exposure prophylaxis (PEP) are

antiretroviral drugs which can be taken before and after exposure to prevent

transmission. PrEP has been shown to be effective at an individual level

across a number of RCTs (Baeten et al. 2012; Thigpen et al. 2012), but there

are few population-level studies. Though PEP cannot be studied with RCTs,

observational studies indicate it is highly effective (Dominguez et al. 2016).

These medical interventions are more costly than other prevention options, so

are primarily useful in high risk settings.

Though implementation of these interventions has enabled important progress,

there remains much more to do. In 2022, 1.3 million people were newly infected

with HIV and there were 630 thousand AIDS-related deaths, more than one death

every minute (UNAIDS 2022). Bold fast-track targets have been set to accelerate

the end of AIDS as a global public health threat by 2030 (UN General Assembly

2016). To meet these targets in the context of disruption to HIV services caused

by the COVID-19 pandemic and a potential shortfall in HIV funding, renewed

commitments are required (Economist Impact 2023).

For available resources to have the greatest impact, it is important that the

right HIV interventions are prioritised to the right populations, in the right place,

and at the right time. By analogy to precision medicine, this paradigm has been

termed precision public health (Khoury et al. 2016). While precision medicine

tailors treatments to individuals, precision public health tailors treatments to

populations. The importance of precision public health is underscored by the vast

potential differences in the cost-effectiveness of any given intervention, with some

interventions orders of magnitude more impactful than others (Ord 2013).

Disease burden varies substantially across multiple spatial scales. In some

countries, the epidemic is concentrated in small populations, and national HIV

prevalence is low. In others, the epidemic is sustained by heterosexual transmission,

and national HIV prevalence is higher (typically >1%). These two epidemic

settings are sometimes described as concentrated and generalised, respectively. Most
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Figure 2.2: Adult (15-49) HIV prevalence varies substantially both within and between
countries in SSA. The estimates from 2023 were generated by country teams using the
Naomi small-area estimation model in a process supported by UNAIDS, and are available
from UNAIDS (2023a). White filled points are country-level estimates, and coloured points
are district-level estimates. Results from Nigeria were not published. Data collection in
the Cabo Delgado province of Mozambique was disrupted by conflict. Obtaining results
for the Democratic Republic of the Congo required removing some districts from the
model.

countries severely affected by HIV are in sub-Saharan Africa (SSA). It is estimated

that 66% of the 39 million PLHIV worldwide live in SSA. HIV prevalence in adults

aged 15-49 is above 10% in some countries in southern Africa. Some districts

even exceed 20% (Figure 2.2). Indeed, just as there is variation between countries,

there is variation within countries. As an illustration, adult HIV prevalence at the

district municipality level in South Africa ranges from 6% in Namakwa to 30% in

uMkhanyakude. Accordingly, the work in this thesis is centred on measurement

of HIV at the district level in SSA.

In all countries and contexts, some groups of people are at much higher risk

than others. Groups of people at increased risk of HIV infection are known as

key populations (KPs). Examples include men who have sex with men (MSM),
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female sex workers (FSW), people who inject drugs (PWID), and transgender

people (TGP) (Stevens et al. 2023). KPs are often marginalised, and face legal

and social barriers. Concentrated settings are defined by the majority of new HIV

infections occurring in KPs and their sexual partners. In generalised settings like

SSA, though concentrated subepidemics do occur (Tanser et al. 2014), risk is more

diffuse across the population. In SSA adolescent girls and young women (AGYW)

are a large demographic group at increased risk of HIV infection (Risher et al.

2021; Monod et al. 2023) but not typically considered a KP. Chapter 5 focuses

on measurement of HIV for AGYW and FSW.

There are a number of ways to practically implement differentiated HIV treat-

ment and prevention services (Godfrey-Faussett et al. 2022). These include

geographic and demographic prioritisation (Meyer-Rath et al. 2018), key population

services (Organization et al. 2022), and risk screening based on individual-level

risk characteristics (Jia et al. 2022). Each approach requires strategic information

about HIV disease burden. This thesis focuses on using HIV surveillance to inform

geographic and demographic prioritisation.

2.2 HIV surveillance

HIV surveillance refers to the collection, analysis, interpretation and dissemination

of data relating to HIV (Pisani et al. 2003). Surveillance can be used to track

epidemic indicators, identify at-risk populations, uncover drivers of transmission,

implement prevention and treatment programs, and assess their impact. Important

indicators to measure include:

• HIV prevalence is the proportion ρ ∈ [0, 1] of a population who have HIV.

The number of PLHIV is given by Nρ, where N is the (living) population size.

Increases in HIV prevalence, and the number of PLHIV, can be caused either

by new HIV infections or more PLHIV remaining alive by taking treatment.

For this reason caution should be taken in directly interpreting changes in

HIV prevalence. Nonetheless, as a primary measure of population disease
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burden, HIV prevalence is vital in calculating all of the other indicators given

below.

• HIV incidence is the rate λ > 0 of new HIV infections. In writing, HIV

incidence is often given as a number of new infections per 1000 person years.

The number of new HIV infections that occur during a given time is the

integral of the rate of HIV incidence over time λt multiplied by the size of

the susceptible population. Let ρt be the HIV prevalence, and Nt be the

population size, at time t. Then the number of new HIV infections which

occur during a given period of time are given by

I =
∫
λt · (1 − ρt) ·Ntdt.

Planning, delivery, and evaluation of prevention programming relies on

estimates of HIV incidence and the number of new HIV infections. Knowing

whether the rate of new infections is rising or declining within specific

populations is crucial.

• ART coverage is the proportion α ∈ [0, 1] of PLHIV who are on ART. The

number of people taking ART is given by N ·ρ ·α. Estimates of ART coverage

play a direct role in planning provision of treatment services, and finding

unmet treatment need.

• Recent infection is the proportion κ ∈ [0, 1] of PLHIV who have been

recently infected. Recency assays use biomarkers to distinguish between

recent and longstanding infection, with varying sensitivity and specificity.

Estimates of recent infection are primarily used to help estimate HIV incidence

(Kassanjee et al. 2012; UNAIDS, WHO, et al. 2022).

• Awareness of status is the proportion ξ ∈ [0, 1] of PLHIV who have been

diagnosed with HIV. Programming of HIV testing and diagnosis is informed

by estimates of awareness of HIV status. HIV diagnosis allows for linkage to

care and progression along the HIV treatment cascade and care continuum

(CDC 2014).
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2.2.1 Data

Measuring the HIV indicators above requires data. To give the most complete

picture of the epidemic, it is important to use multiple sources of data. The

most prominent categories are:

• Household surveys are large, national, cross-sectional studies. The surveys

conducted in the most countries are Demographic and Health Surveys [DHS

;USAID (2012)], which include a wide range of health related questions, and

more HIV-specific Population-based HIV Impact Assessment [PHIA; ICAP

(2023)] and AIDS Indicator Surveys (AIS). Some countries also implement their

own survey series, such as the South Africa Behavioural, Sero-status and Media

Impact Survey (SABSSM). Household surveys provide high quality standard-

ised data about HIV, typically designed to furnish nationally-representative

estimates. Both DHS and PHIA surveys collect demographic, behavioural, and

clinical information. Additionally, HIV testing is conducted via home-based

testing, with results returned immediately, or anonymous dried blood spot

testing.

• Programmatic data refer to data routinely collected during delivery of

health services. Examples include data from antenatal care (ANC), HIV

testing, and ART service delivery. Due to their integration with regular

service delivery, programmatic data are available at higher frequency than

other data sources. However, in comparison with designed studies, less control

can be exercised over collection of programmatic data. It is common to

encounter issues of data quality and reliability, as well as bias, in working

with programmatic data.

• Cohort studies follow a group of people over time. Outcomes may be

measured more systematically in a cohort study than in other study designs.

The data from cohort studies have particular use in informing otherwise

difficult to estimate epidemiological parameters. Such parameters include
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disease progression and mortality rates, transmission dynamics, and treatment

outcomes. Examples of population-based cohort studies in SSA include the

Manicaland Project Open Cohort Study in Zimbabwe (Gregson et al. 2006),

the Rakai Community Cohort Study in Uganda (Grabowski et al. 2017), and

the Karonga Demographic Surveillance Site in Malawi (A. C. Crampin et al.

2012).

2.2.2 Challenges

Obtaining reliable, timely estimates of the HIV indicators at an appropriate

spatial resolution using the available data sources is challenging. The most

significant difficulties faced are enumerated below, providing important context

for the work in this thesis:

1. Data sparsity: Collection of data is costly and time consuming. As a result,

limited direct data might be available for the particular time, location, or

population of interest. For example, in many countries the last conducted

household survey is several years out of date. Furthermore, the sample

sizes in household surveys are typically designed to be representative at a

national-level. As a result, data for subpopulations are usually sparse.

2. Missing data: The sampling frame of a survey may not correspond to the

target population. For example, some KPs are difficult to reach, and may

be omitted from sampling frames (Jin et al. 2021). Additionally, individuals

included on the sampling frame may choose not to respond. Each of these

issues can be characterised as being problems of missing data.

3. Response and measurement biases: Individuals may be hesitant to

disclose their HIV status, or report higher risk behaviours, due to social

desirability bias or a fear of discrimination or stigma. Furthermore, individuals

may be unaware of their HIV status. When available, biomarker data can

be used to overcome under-reporting of HIV status, but still may be subject
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to measurement errors. Biases in behavioural data can be more difficult to

disentangle.

4. Denominators and demography: Many indicators are rates or propor-

tions, which rely on estimates of the population at risk in the denominator.

For example, HIV prevalence is a proportion of the population, and HIV

incidence is a rate per person-years at risk. Accurately estimating population

denominators over space, time, and demographies is itself a challenging task

(Tatem 2017). Taking a ratio of uncertain quantities amplifies uncertainty,

but is rarely properly accounted for.

5. Inconsistent data collection and reporting: The sources of data that are

collected might vary across space and time. Additionally, reporting protocols

or definitions for the same data source can also change. Though household

surveys tend to be more consistent than programmatic data, the questions

included and design of the surveys do change.

6. Reliance on epidemiological parameters: Indicators rely on estimates

of epidemiological parameters such as rates of disease progression. These

parameters may not generalise to the setting of interest. Further, they are

typically applied coarsely, and without proper accounting for uncertainty.

2.2.3 Statistical approaches

The challenges above make direct interpretation of the data often misleading or

impossible. Careful statistical modelling is required to mitigate these limitations as

effectively as possible. The most important statistical approaches for estimating

HIV indicators used in this thesis are:

1. Borrowing information: When little direct data are available, data judged

to be indirectly related can be used to help improve estimation. For example, if

limited data are available for individuals of a certain age, it is likely reasonable

to make use of data for individuals of a similar age. As well as over age groups,
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information can be borrowed between and within countries, and across times.

Chapter 4 discusses models for borrowing information over space. These

models, along with others for borrowing information in other dimensions, are

applied in Chapters 5 and 6.

2. Evidence synthesis: Multiple sources of evidence can be combined to

overcome the limitations of any one data source. For example, infrequently

run household surveys can be complemented by more up-to-date programmatic

data. Chapter 6 develops methods suitable for the complex statistical models

required to integrate data sources. Multiple data sources are used in Chapter 5

to overcome the limitations of household surveys for measuring KP population

sizes.

3. Expert guidance: Expert epidemiological, demographic, and local stake-

holder guidance can be used to improve estimates. Ensuring the quality of any

data used in the estimation process is essential. Indeed, careful validation of

data by country teams is a crucial part of the yearly UNAIDS HIV estimates

process.

4. Uncertainty quantification: Conclusions drawn by synthesising multiple

incomplete data sources are unlikely to be firm and unanimous. It is therefore

especially important that the uncertainties inherent to any statistical analysis

are accurately and transparently presented. The Bayesian statistical paradigm

introduced in Chapter 3 and used throughout this thesis is particularly well

suited to handling of uncertainty.
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3.1 Bayesian statistics

Bayesian statistics is a mathematical paradigm for learning from data. Two reasons

stand out as to why it is especially well suited to facing the challenges presented in

Section 2.2. First, it allows for principled and flexible integration of prior domain

knowledge. Second, uncertainty over all unknown quantities is handled as an integral

part of the Bayesian paradigm. This section provides a brief and at times opinionated

overview of Bayesian statistics. For a more complete introduction, I recommend

Gelman, Carlin, et al. (2013), McElreath (2020) or Gelman, Vehtari, et al. (2020).

3.1.1 Bayesian modelling

The Bayesian approach to data analysis is based on construction of a probability

model for the observed data y = (y1, . . . , yn). Parameters ϕ = (ϕ1, . . . , ϕd) are used

to describe features of the data. Both the data and parameters are assumed to

be random variables, and their joint probability distribution is written as p(y,ϕ).

Subsequent calculations, and the conclusions which follow from them, are made

based on manipulating the model using probability theory.

Models are most naturally constructed from two parts, known as the likelihood

p(y | ϕ) and the prior distribution p(ϕ). The joint distribution is obtained by
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the product of these two parts

p(y,ϕ) = p(y | ϕ)p(ϕ). (3.1)

The likelihood, as a function of ϕ with y fixed, reflects the probability of observing

the data when the value of the parameters is ϕ. The prior distribution encapsulates

beliefs about the parameters ϕ before the data are observed.

Recommendations for specifying prior distributions vary. The extent to which

subjective information should be incorporated into the prior distribution is a central

issue. Proponents of the objective Bayesian paradigm (Berger 2006) put forward that

the prior distribution should be non-informative, so as not to introduce subjectivity

into the analysis. Others see subjectivity as fundamental to scientific inquiry, with

no viable alternative (Goldstein 2006). Though subjectivity is typically discussed

with regard to the prior distribution, as we will in Section 3.3, the distinction

between prior distribution and likelihood is not always clear. As such, it may be

argued that issues of subjectivity are not unique to prior distribution specification,

and ultimately that the challenge of specifying the data generating process – that

is, p(y,ϕ) – is better thought of more holistically (Gelman, Simpson, et al. 2017).

The probability model can be simulated from to obtain samples (y,ϕ) ∼ p(y,ϕ).

If samples of the data y differ too greatly from what the analyst would expect to

see in reality, then the model fails to capture their prior scientific understanding.

Models that do not produce plausible data samples can be refined. Checks of this

kind [Gelman, Carlin, et al. (2013); Chapter 6] can be used to help iteratively

build models, gradually adding complexity as required.

3.1.2 Bayesian computation

Having constructed a model (Equation (3.1)), the primary goal in a Bayesian analysis

is to obtain the posterior distribution p(ϕ | y). This distribution encapsulates

probabilistic beliefs about the parameters given the observed data. As such,

the posterior distribution has a central role in use of the statistical analysis

for decision making.
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Figure 3.1: An example of Bayesian modelling and computation for a simple one
parameter model. Here the likelihood is yi ∼ Poisson(ϕ) for i = 1, 2, 3 and the prior
distribution on the rate parameter ϕ > 0 is ϕ ∼ Gamma(3, 1). Observed data y = (1, 2, 3)
was simulated from the distribution Poisson(2.5). As such, the true data generating
process is within the space of models being considered. This situation is sometimes known
(Bernardo and A. F. Smith 2001) as the M-closed world, in contrast to the M-open
world where the model is said to be misspecified. Further, the posterior distribution
is available in closed form as Gamma(9, 4). This is because the posterior distribution
is in the same family of probability distributions as the prior distribution. Models of
this kind are described as being conjugate. Conjugate models are often used because of
their convenience. Though other models may be more suitable, Bayesian inference will
typically be more computationally demanding than for conjugate models. The posterior
distribution here is more tightly peaked than the prior distribution. Contraction of this
kind is typical, but not always the case.

Using the eponymous Bayes’ theorem, the posterior distribution is obtained by

p(ϕ | y) = p(y,ϕ)
p(y) = p(y | ϕ)p(ϕ)

p(y) . (3.2)

Unfortunately, most of the time it is intractable to calculate the posterior distribution

analytically. This is because of the potentially high-dimensional integral

p(y) =
∫
p(y,ϕ)dϕ (3.3)

in the denominator of Equation (3.2). The result of this integral is known as

the evidence p(y), and quantifies the probability of obtaining the data under

the model. Hence, although it is easy to evaluate a quantity proportional to

the posterior distribution

p(ϕ | y) ∝ p(y | ϕ)p(ϕ), (3.4)
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it is typically difficult to evaluate the posterior distribution itself. Further, even given

a closed form expression for the posterior distribution, if ϕ is of moderate to high di-

mension, then it is not obvious how to evaluate expressions of interest, which usually

themselves are integrals, or expectations, with respect to the posterior distribution.

The difficulty in performing Bayesian inference may be thought of as analogous

to the difficulty in calculating integrals. As with integration, in specific cases

closed form analytic solutions are available. Figure 3.1 illustrates one such case,

where the prior distribution and posterior distribution are in the same family of

probability distributions. In the more general case, no analytic solution is available,

and computational methods must be relied on. Broadly, computational strategies

for approximating the posterior distribution (Martin et al. 2023) may be divided

into Monte Carlo algorithms and deterministic approximations.

3.1.2.1 Monte Carlo algorithms

Monte Carlo algorithms (Robert and Casella 2005) aim to generate samples

from the posterior distribution

ϕs ∼ p(ϕ | y), s ∈ 1, . . . S. (3.5)

These samples may be used in any future computations involving the posterior

distribution or functions of it. For example, if G = G(ϕ) is a function, then the

expectation of G with respect to the posterior distribution can be approximated by

E(G | y) =
∫
G(ϕ)p(ϕ | y)dϕ ≈ 1

S

S∑
s=1

G(ϕs), (3.6)

using the samples from the posterior distribution in Equation (3.5). Most quantities

of interest can be cast as posterior expectations, which may then be approximated

empirically using samples in this way. Of course, it remains to discuss how the

samples are obtained.

Markov chain Monte Carlo (MCMC) methods (Roberts and Rosenthal 2004) are

the most popular class of sampling algorithms. Using MCMC, posterior samples are

generated by simulating from an ergodic Markov chain with the posterior distribution
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as its stationary distribution. The Metropolis-Hastings [MH; Metropolis et al. (1953);

Hastings (1970)] algorithm uses a proposal distribution q(ϕs+1 | ϕs) to generate

candidate parameters for the next step in the Markov chain. These candidate

parameters are then accepted or rejected with some probability determined based

on their log-posterior evaluation. Many MCMC algorithms, including the Gibbs

sampler (S. Geman and D. Geman 1984), can be thought of as special cases of MH.

Other notable classes of sampling algorithms include importance sampling [IS;

Tokdar and Kass (2010)] methods, which uses weighted samples, sequential Monte

Carlo [SMC; Chopin, Papaspiliopoulos, et al. (2020)] methods, which are based on

sampling from a sequence of distributions, and approximate Bayesian computation

[ABC; Sisson et al. (2018)], which works by comparing simulated data to observed

data, and does not require evaluation of the log-posterior. Though these methods

have found applications in specific domains, MCMC is currently more widely used.

The most important benefits of MCMC are its generality, theoretical reliability,

and implementation in accessible software packages.

Illustrating the use of MCMC being supported by software, this thesis uses the

No-U-Turn sampler [NUTS; Hoffman, Gelman, et al. (2014)], a Hamiltonian Monte

Carlo [HMC; Duane et al. (1987); Neal et al. (2011)] algorithm, as implemented

in the Stan (Carpenter et al. 2017) probabilistic programming language (PPL).

HMC uses derivatives of the posterior distribution to generate efficient MH proposal

distributions based on Hamiltonian dynamics. Three tuning parameters control the

behaviour of the HMC algorithm [Section 15.2; Stan Development Team (2023)].

NUTS automatically adapts these parameters based on local properties of the

posterior distribution. Though not a one-size-fits-all solution, NUTS has been

shown empirically to be a good choice for sampling from a range of posterior

distributions. Figure 3.2 shows an example of using the NUTS MCMC algorithm

to sample from a posterior distribution.

After running an MCMC sampler, it is important that diagnostic checks are

used to evaluate whether the Markov chain has reached its stationary distribution.

If so, the Markov chain is said to have converged, and its samples may be used
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Figure 3.2: NUTS can be used to sample from the posterior distribution described
in Figure 3.1. Panel A shows a histogram of the NUTS samples as compared to the
true posterior. The visual appearance of a histogram depends highly on the number
of bins chosen, though it does not depend on tuning parameters like kernel density
estimation. Other visualisations, such as empirical cumulative difference function plots,
though less initially intuitive, are preferred for accurate distributional sample comparisons.
Panel B is a traceplot showing the path of the Markov chain {ϕs}1000

s=1 as it explores
the posterior distribution. In this case, the Markov chain moves freely throughout the
posterior distribution, without getting stuck in any one location for long, indicating good
performance of the sampler. Panel C shows convergence of the empirical posterior mean
1
s

∑
l≤s ϕl to the true value of E(ϕ) as more iterations of the Markov chain are included

in the sum. In this case, the samples from NUTS are highly accurate in estimating this
posterior expectation.

to compute posterior quantities. Though it is possible to check poor convergence

in some cases, we may never be sure that a Markov chain has converged, and

thus that results computed from MCMC will be accurate. Panel 3.2B shows

the traceplot for a Markov chain which appears to have converged, and moves

freely through the range of plausible parameter values. A range of convergence

diagnostics have been developed for MCMC (Roy 2020; C. C. Margossian and

Gelman 2023). Two widely used examples are the potential scale reduction factor

R̂ (Gelman and Rubin 1992), which compares the variance between and within

parallel Markov chains, and the effective sample size (ESS), which measures the

efficiency of samples drawn from MCMC.

20



Bayesian spatio-temporal statistics

3.1.2.2 Deterministic approximations

The Monte Carlo methods discussed in Section 3.1.2.1 make use of stochasticity

to generate samples from the posterior distribution. Deterministic approximations

offer an alternative approach, often focused more directly on approximating the

posterior distribution or posterior normalising constant. These approaches can be

faster than Monte Carlo methods, especially for large datasets or models. That

said, they lack strong theoretical guarantees of accuracy.

One prominent deterministic approximation is the Laplace approximation. It

involves approximating the posterior normalising constant using Laplace’s method

of integration. This is equivalent to approximating the posterior distribution

by a Gaussian distribution. Numerical integration, or quadrature, is another

deterministic approach in which the posterior normalising constant is approximated

using a weighted sum of evaluations of the unnormalised posterior distribution. The

integrated nested Laplace approximation [INLA; Håvard Rue, Martino, and Chopin

(2009)] combines quadrature with the Laplace approximation. These methods are

used throughout this thesis. In depth discussion is left to Chapter 6.

Variational inference [VI; Blei et al. (2017)] is another important deterministic

approximation. The well-known expectation maximisation [EM; Dempster et al.

(1977)] and expectation propagation [EP; Minka (2001)] algorithms are closely

related to VI. In VI, the approximate posterior distribution is assumed to belong

to a particular family of functions. Optimisation algorithms are then used to

choose the best member of that family, typically by minimising the Kullback-Leibler

divergence to the posterior distribution. VI lacks theoretical guarantees and is

known to often inaccurately estimate posterior variances (Giordano et al. 2018). As

such, statisticians tend to approach VI with caution, despite its relative widespread

acceptance within the machine learning community. Developing diagnostics to

evaluate the accuracy of VI is an important area of ongoing research (Yao et al. 2018).
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3.1.3 Interplay between modelling and computation

Modern computational techniques and software like PPLs have succeeded in

abstracting away calculation of the posterior distribution from the analyst for

many models. However, computation remains intractable in, depending on the

measure used, what can be argued to be the majority of cases. The analyst needs

therefore not only to be concerned with choosing a model suitable for the data,

but with choosing a model for which the posterior distribution may tractably be

calculated in reasonable time. As such, there is an important interplay between

modelling and computation, wherein models are bound by the limits of computation.

As computational techniques and tools improve, the space of models available to

the analyst expands. Exactly the focus of Chapter 6 is on expanding the space

of models practically available to analysts.

3.2 Spatio-temporal statistics

Space and time are important features of infectious disease data, including those

related to HIV. The field of spatio-temporal statistics (Cressie and Wikle 2015) is

concerned with such observations, indexed by spatial and temporal location. It

unifies the fields of spatial statistics (R. S. Bivand et al. 2008), concerned with

observations indexed by space, and time series analysis (Shumway and Stoffer 2017),

concerned with observations indexed by time. First, Section 3.2.1 characterises the

shared properties of spatio-temporal data. Then, Section 3.2.2 describes how these

properties facilitate the class of small-area estimation methods used in this thesis.

3.2.1 Properties of spatio-temporal data

Three important properties are discussed in this section: scale, correlation struc-

ture, and size.
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Figure 3.3: In Panel A, the spatial location of Cape Town in South Africa can be
considered a point, and the ZF Mgcawu District Municipality (DM) can be considered as
an an area. In Panel B, World AIDS Day, designated on the 1st of December every year,
can be considered a point in time, whereas the second fiscal quarter, running through
April, May and June, and denoted by Q2 represents a period of time. In reality, both
Cape Town and World AIDS Day are areas, rather than true point locations. Instances
of infinitesimal point locations in everyday life, outside of mathematical abstraction, are
rare.

3.2.1.1 Scale

The scale of spatio-temporal data refers to its extent and resolution. Its extent is

the size of the spatial study region and length of time over which data was collected.

Its resolution is how fine-grained those observations were.

In this thesis, the spatial study region S ⊆ R2 used is typically a country or

collection of countries. It is assumed to have two dimensions, corresponding to

latitude and longitude. Observations may be associated to a point s ∈ S or area

A ⊆ S in the spatial study region, illustrated in Panel A3.3. The temporal study

period T ⊆ R can more generally be assumed to be one-dimensional. This feature,

together with the fact that time only moves forward, is what distinguishes space

and time. As with space, observations may be associated to a point t ∈ T or

period of time T ⊆ T , illustrated in Panel B3.3.

The change-of-support problem (Gelfand et al. 2001) occurs when data are

modelled at a scale different to the one it was observed at. For example, in this

thesis, particularly Chapter 4, point data are modelled at an area-level. Special cases

of the change-of-support problem include downscaling, upscaling, and dealing with

23



Bayesian spatio-temporal statistics

so-called misaligned data. It is also possible that spatio-temporal observations of the

same process are made at multiple scales. Jointly modelling data at different scales

simultaneously is another closely related challenge to the change-of-support problem.

3.2.1.2 Correlation structure

In “The Design of Experiments” Fisher (1936) observed that neighbouring crops

were more likely to have similar yields than those far apart. This observation was

later termed Tobler’s first law of geography: “everything is related to everything

else, but near things are more related than distant things” (Tobler 1970). As

well as space, Tobler’s first law applies to time, in that observations made close

together in time tend to be similar.

This law can be formalised using space-time covariance functions, measuring

the dependence of observations across their spatial and temporal dimensions. A

space-time covariance structure (Porcu et al. 2021) is said to be separable when

it can be factorised as a product of individual spatial and temporal covariances,

and nonseparable when it can’t. A separable space-time covariance could have

spatial and temporal components which are either independent and identically

distributed (IID) or structured (Knorr-Held 2000). Spatial covariance functions

are called isotropic when they apply equally in all directions, and stationary when

they are invariant over space. Temporal covariance structures are often periodic,

corresponding to daily, weekly, monthly, quarterly, or yearly cycles.

That spatio-temporal data are rarely IID is a statistically important point. The

consequence is that it is rare to have true replicates available. Typically, only a

single instance of a spatio-temporal can ever be realised.

3.2.1.3 Size

Data with both spatial and temporal dimensions are often large. For example,

observations collected every week across a number of sites in a country can easily

number in the thousands. Storage and mathematical operations with large spatio-

temporal data can be challenging.
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Figure 3.4: Simulation of a simple random sample yi ∼ Bin(m, pi) with varying sample
size m = 5, 25, 125 in each of the i = 1, . . . , 156 constituencies of Zambia. Direct
estimates were obtained by the empirical ratio of data to sample size. Modelled estimates
were obtained using a logistic regression with linear predictor given by an intercept
and a spatial random effect. Estimates of HIV indicators for Zambia have previously
been generated at the district-level, comprising 116 spatial units. Moving forward,
there is interest in generating estimates at the higher-resolution constituency level,
as program planning is devolved locally. The viridis colour palette, as implemented
by the viridis R package (Garnier et al. 2023), was used in this figure. It is
used often throughout this thesis because it is perceptually uniform and accessible
to colourblind viewers (N. Smith and van der Walt 2015). This figure was adapted from
a presentation given for the Zambia HIV Estimates Technical Working Group, available
from https://github.com/athowes/zambia-unaids.

Further, models for spatio-temporal data typically require many parameters.

Whereas large IID data can be modelled using a small number of parameters, each

observation in a spatio-temporal dataset may need to be characterised by its own

parameters. In combination, large data (big n) and models with a large number

of parameters (big d) make Bayesian inference, and other complex mathematical

operations, challenging for spatio-temporal data.

3.2.2 Small-area estimation

Data always has some cost to collect. This cost can be significant and prohibitive.

Especially for data relating to people, where collection is difficult to automate. In
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Figure 3.5: The setting of this figure matches that of Figure 3.4. Estimates from surveys
with higher sample size have higher sample Pearson correlation coefficient R with the
underlying truth, illustrating the benefit of collecting more data. For a fixed sample size
however, correlation can be improved by using modelled estimates to borrow information
across spatial units, rather than using the higher variance direct estimates. Points along
the dashed diagonal line correspond to agreement between the estimate obtained from the
survey and the underlying truth used to generate the data. For each sample size, using a
spatial model increases the correlation between the estimates and underlying truth. The
effect is more pronounced for lower sample sizes.

spatio-temporal statistics, there are a large number of possible locations in space

and time. Given the cost of data collection, often no or limited direct observations

may be available for any given space-time location. Direct estimates of indicators

of interest are either impossible or inaccurate in this setting.

Small-area estimation [SAE; Pfeffermann et al. (2013)] methods aim to overcome

the limitations of small data by sharing information. In the spatio-temporal

setting sharing of information occurs across space and time. Prior knowledge that

observations in one spatio-temporal location are correlated with those at another

(Section 3.2.1.2) can be used to improve estimates.

Figures 3.4 and 3.5 illustrate the unreliability of direct estimates from small

sample sizes, and the benefit of using a spatial model to overcome this limitation.
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The effect is most pronounced for the sample size of 5, where the only possible direct

estimates are 0, 0.2, 0.4, 0.6, 0.8 and 1. Using a spatial model to borrow information

across space in this case results in improvement of the Pearson correlation coefficient

between the estimates and the true underlying values from 0.34 to 0.53.

SAE methods are not only useful in the spatio-temporal setting. More generally,

they apply in any situation where data are limited for subpopulations of interest.

Just as these subpopulations can be generated by spatio-temporal variables, they

can be generated by other variables. One such example is demographic variables.

Analogous to spatio-temporal correlation structure, we also can often expect there

to be demographic correlation structure. For example, those of the same sex are

more likely to be similar, as are those of similar ages or socio-economic strata.

3.3 Model structure

The spatio-temporal data used in this thesis are not IID (Section 3.2.1.2). This

section discusses ways to use statistical models to encode more complex relations

between observations mathematically. Simple structures are discussed first, begin-

ning with the linear model. Extensions are introduced one at a time, culminating

in the model structures used throughout the thesis.

3.3.1 Linear model

In a linear model, each observation yi with i ∈ [n] is modelled using a Gaus-

sian distribution

yi ∼ N (µi, σ). (3.7)

The conditional mean µi is assumed to be linearly related to a collection of p

covariates z1i, . . . , zpi

µi = ηi (3.8)

ηi = β0 +
p∑
l=1

βlzli. (3.9)
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Priors may be placed on the regression coefficients, as well as the observation

standard deviation

βl ∼ p(βl), l = 0, . . . , p, (3.10)

σ ∼ p(σ). (3.11)

While the linear model provides a useful foundation, its strong assumptions and

limited flexibility call for careful use.

3.3.2 Generalised linear model

Generalised linear models (GLMs) extend the linear model by allowing the con-

ditional mean µi to be connected to the linear predictor ηi via a link func-

tion g as follows

yi ∼ p(yi | ηi), (3.12)

µi = E(yi | ηi) = g(ηi). (3.13)

The logistic function g(η) = exp(η)/(1+exp(η)) is commonly used as a link function

to ensure that the conditional mean is in the range [0, 1]. Similarly, the exponential

function g(η) = exp(η) can be used to ensure the conditional mean is positive. The

linear model is a special case of a GLM where the link function g is the identity. As

well, GLMs admit a wider range of likelihoods p(yi | ηi) than linear models, typically

restricted to the so-called exponential family of distributions. The equation for the

linear predictor is the same as the linear model case in Equation (3.9).

3.3.3 Generalised linear mixed effects model

In a generalised linear mixed effects model (GLMM) the linear predictor of the

GLM is extended as follows

ηi = β0 +
p∑
l=1

βlzli +
r∑

k=1
uk(wki). (3.14)

The terms βl are referred to as fixed effects. The terms uk are called random

effects, of additional covariates wki. The words fixed and random effects have
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notoriously many different and incompatible definitions which unfortunately can

cause confusion (Gelman 2005).

Random effects allow for more complex sharing of information between obser-

vations. To demonstrate this fact, first consider the model

ηi = β0. (3.15)

In this model all observations are assumed to be equivalent, and as such information

is said to be completely pooled together. Second, consider the so-called no

pooling model

ηi = β0 + β1zi, (3.16)

with zi ∈ {0, 1} a binary covariate. Now, there are two groups of observations,

each of which with its own mean: β0 for the first group and β0 + β1 for the second.

No amount of information is shared between the two groups. Finally, consider an

intermediate between these two extremes, known as the partial pooling model. In

the partial pooling model, the extent to which information is shared between groups

is learnt rather than fixed to either extreme at the outset, as with the complete

or no pooling models. The parameter β0 applies to all groups, and each group is

differentiated by a specific value of the random effects ui.

Random effects can be structured to share information between some observations

more than others. In spatio-temporal statistics, structured spatial and temporal

random effects are often used to encode smoothness in space or time. In contrast,

unstructured random effects treat groups of observations as being exchangeable.

Generalised additive models [GAMs; Wood (2017); Hastie and Tibshirani (1987)]

are another class of models which extend GLMs. Though GAMs place more of

a focus on using uk to model non-linear relationships between covariates and the

response variable, they can also be cast to fit into the GLMM framework.
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3.3.4 Latent Gaussian model

Latent Gaussian models [LGMs; Håvard Rue, Martino, and Chopin (2009)] are a

type of GLMMs in which Gaussian priors are used for many of the models parameters.

More specifically, these parameters are β0, {βj}, {uk(·)}, and can be collected into

a vector x ∈ RN called the latent field. The Gaussian prior distribution is then

x ∼ N (0,Q(θ2)−1), (3.17)

where θ2 ∈ Rs2 are hyperparameters, with s2 assumed small. The vector θ1 ∈ Rs1 ,

with s1 assumed small, are additional parameters of the likelihood. Let θ =

(θ1,θ2) ∈ Rm with m = s1 + s2 be all hyperparameters, with prior distribution

p(θ). The posterior distribution under an LGM is then

p(x,θ | y) ∝ p(y | x,θ)p(x | θ)p(θ), (3.18)

with the complete set of parameters ϕ = (x,θ), and N +m = d. In an LGM, like

the more general GLMM case as given in Equation (3.14), there is a one-to-one

correspondence between observations yi and elements of the linear predictor ηi.

3.3.5 Extended latent Gaussian model

Extended latent Gaussian models [ELGMs; Stringer et al. (2022)] facilitate modelling

of data with greater non-linearities than an LGM. In an ELGM, the structured

additive predictor is redefined as

η = (η1, . . . ηNn), (3.19)

where Nn ∈ N is a function of n. Unlike in the LGM case, it is possible that Nn ̸= n.

Each mean response µi now depends on some subset Ji ⊆ [Nn] of indices of η,

with ∪n
i=1Ji = [Nn] and 1 ≤ |Ji| ≤ Nn, where [Nn] = {1, . . . , Nn}. The inverse link

function g(·) is redefined for each observation to be a possibly many-to-one mapping
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gi : R|Ji| → R, such that µi = gi(ηJi
). Put together, ELGMs are of the form

yi ∼ p(yi | ηJi
,θ1), i = 1, . . . , n,

µi = E(yi | ηJi
) = gi(ηJi

),

ηj = β0 +
p∑
l=1

βlzli +
r∑

k=1
uk(wki), j ∈ [Nn].

The latent field and hyperparameter prior distributions are equivalent to the LGM

case.

Though the ELGM model class was only introduced recently, it connects much

of the work done in this thesis. While it can be transformed to an LGM using

the Poisson-multinomial transformation (Baker 1994), the multinomial logistic

regression model used in Chapter 5 is most naturally written as an ELGM, where

each observation depends on the set of structured additive predictors corresponding

to the set of multinomial observations. In Chapter 6, the Naomi small-area

estimation model used to produce estimates of HIV indicators is shown to have

ELGM-like features.

3.4 Model comparison

Many models can be fit to the same data during the course of an analysis. Model

comparison methods are used to determine which is the most suitable for use. This

section focuses on measuring suitability via the model’s predictive performance

(Vehtari and Ojanen 2012).

Ideally, new data ỹ = (ỹ1, . . . , ỹn) drawn from the true data generating process

would be available to test predictive performance. The log predictive density for

new data (LPD) (Gelman, Hwang, et al. 2014) is one measure of out-of-sample

predictive performance given by

lpd =
n∑
i=1

log p(ỹi | y) =
n∑
i=1

log p(ỹi | ϕ)p(ϕ | y)dϕ. (3.20)
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The expected LPD (ELPD) integrates the LPD over the data generating process

to give a measure of expected performance

elpd =
n∑
i=1

log
∫
p(ỹi | y)p(ỹi)dỹi. (3.21)

In reality, such data are not usually available, and instead the ELPD must be

approximated using the available data.

3.4.1 Information criteria

Information criteria can be constructed to approximate the ELPD using adjusted

within-sample predictive performance. The Akaike [AIC; Akaike (1973)] and de-

viance [DIC; D. J. Spiegelhalter et al. (2002)] information criteria estimate ELPD by

elpdIC = log p(y | ϕ̂), (3.22)

where ϕ̂ is a maximum likelihood estimate (AIC) or Bayesian point estimate (DIC).

The widely applicable information criteria [WAIC; Watanabe (2013)] improves upon

Equation (3.22) by instead using the predictive density of the data

elpdWAIC =
n∑
i=1

log p(yi | y). (3.23)

As both Equations (3.22) and (3.23) are based on within-sample measures, they over-

estimate the ELPD. As such, they are adjusted downward by a complexity penalty

pIC. The particular penalty varies depending on the particular information criteria.

3.4.2 Cross-validation

Cross-validation is an alternative way to estimate the ELPD. Rather than use a

complexity penalty, as in Section 3.4.1, to adjust a within-sample estimate, cross-

validation (CV) partitions the data into training and held-out sets of data. For

example, in a leave-one-out (LOO) CV there are n partitions, where each held-out

set is a single observation. The LOO-CV estimate of ELPD is

elpdLOO-CV =
n∑
i=1

log p(yi | y−i), (3.24)
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where the subscript −i refers to all elements of the vector excluding i. Naively, com-

puting elpdLOO-CV requires refitting the model n times. This can be computationally

costly, and so approximation strategies have been developed. Importance sampling

methods using the the full posterior as a proposal are a notable example, including

Pareto-smoothed importance sampling [PSIS; Vehtari, Gelman, et al. (2017)].

Equation (3.24) is additive, and treats each observation as an independent unit of

information. Special care is therefore required in applying cross-validation techniques

to dependent (Section 3.2.1.2) spatio-temporal data. For example, Bürkner et al.

(2020) and Cooper et al. (2024) use “leave-future-out” (LFO) cross-validation in

the time-series context. Similarly, in Chapter 4 I apply a spatial-leave-one-out

(SLOO) cross-validation scheme.

3.4.3 Scoring rules

Scoring rules [SR; Gneiting and Raftery (2007)] measure the quality of probabilistic

forecasts. The log score, used above in the ELPD, is one example of a scoring rule.

However, it is by no means the only possibility. Any information criterion (Section

3.4.1) or cross-validation strategy (Section 3.4.2) can be redefined using a different

scoring rule, or utility function more broadly. Possible examples include the root

mean square error (RMSE), variance explained (R2) or classification accuracy.

The log score (LS) is popular, in part because it is an example of a strictly proper

scoring rule (SPSR). A scoring rule is strictly proper when the forecaster gains

maximum expected reward by reporting their true probability distribution. Any

scoring rule which does not admit this property is susceptible to manipulation, in

some sense. The continuous ranked probability score [CRPS; Matheson and Winkler

(1976)], which generalises the Brier score (Brier 1950) beyond binary classification,

is another example of a SPSR. Ideally, the correct scoring rule to use in an analysis

should be determined based upon the application setting.
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3.4.4 Bayes factors

Finally, the evidence p(y), given in Equation (3.3), can also be used as a measure

of model performance. If M0 and M1 are two competing models, then the Bayes

factor comparing M0 to M∞ is

B01 = p(y | M0)
p(y | M1)

, (3.25)

where p(y | M) denotes the evidence under model M. The Bayes factor can be

interpreted as supporting the maximum a posteriori model. If B01 > 1 then support

is provided for M0 and if B01 < 1 then support is provided for M1. Bayes factors

can also be framed as predictive criteria according to the decomposition

p(y) = p(y1)p(y2 | y1) · · · p(yn | yn−1, . . . , y1). (3.26)

3.5 Survey methods

Large national household surveys (Section 2.2.1) provide the highest quality population-

level information about HIV indicators in SSA. Demographic and Health Surveys

[DHS; USAID (2012)] are funded by the United States Agency for International De-

velopment (USAID) and run every three to five years in most countries. Population-

based HIV Impact Assessment (PHIA) surveys are funded by PEPFAR and run

every four to five years in high HIV burden countries.

Analysis of responses from surveys can require specific methods. This section

provides required background, before describing the survey design approach used by

household surveys in SSA, and the methods used to analyse this data in this thesis.

3.5.1 Background

Consider a population of N individuals, indexed by i, with outcomes of interest yi.

If a census were run, with all responses recorded, then any population quantities

of interest could be directly calculated. However, running a census is usually too

expensive or otherwise impractical. As such, in a survey only a subset of individuals
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are sampled: let Si be an indicator for whether or not individual i is sampled.

Furthermore, only a subset of those sampled have their outcome recorded, due to

nonresponse or otherwise: let Ri be an indicator for whether or not yi is recorded.

If Si = 0 then Ri = 0, and if Si = 1 then individual i may not respond such that

Ri = 0. Consider a function Gi = G(yi). The population mean of G is

Ḡ = 1
N

N∑
i=1

G(yi), (3.27)

and a direct estimate of Ḡ based on the recorded subset of the population is

ḠR =
∑N
i=1 RiG(yi)∑N

i=1 Ri

, (3.28)

where mR = ∑N
i=1 Ri is the recorded sample size.

In a probability sample, individuals are selected to be included in the survey at

random. On the other hand, in a non-probability sample, inclusion or exclusion

from the survey is deterministic. A simple random sample (SRS) is a probability

sample where the sampling probability for each individual is equal P(Si = 1) =

1/N . A survey design is called complex when the sampling probabilities for each

individual vary, such that P(Si = 1) = πi, with ∑N
i=1 πi = 1 and πi > 0. Complex

survey designs can offer both greater practicality and statistical efficiency than a

SRS. However, care is required in analysing data collected using complex survey

designs. Under a complex design, not accounting for unequal sampling probabilities

will result in bias. That said, even under SRS, nonresponse analogous bias can

be caused by non-response.

3.5.2 Survey design

The DHS employs a two-stage sampling procedure, outlined here following USAID

(2012). In the first stage, enumeration areas from a recently conducted census are

typically used as the primary sampling unit, or cluster. Each cluster is assigned

to a strata h by region, as well as by urban-rural status. After appropriate strata
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sample sizes nh are determined, EAs are sampled with probability proportional

to number of households

π1hj = nh × Nhj∑
j Nhj

, (3.29)

where Nhj is the number of households in strata h and cluster j. In the second

stage, the secondary sampling units are households. All households in the selected

cluster are listed, before being sampled systematically at a regular interval, with

equal probability

π2hj = nhj
Nhj

, (3.30)

where nhj is the number of households selected in cluster j and stratum h. All adults

are interviewed in each selected household. As a result, the probability an individual

is sampled is equal to the probability their household is sampled πhj = π1hj × π2hj.

3.5.3 Survey analysis

Suppose a survey is run with complex design, and sampling probabilities πi. Some

individuals are more likely to be included in the survey than others. By over-

weighting the responses of those unlikely to be included, and under-weighting the

responses of those likely to be included, this feature can be taken into account.

Design weights δi = 1/πi can be thought of as the number of individuals in the

population represented by the ith sampled individual. Let

P(Ri = 1 |Si = 1) = υi (3.31)

be the probability of response for sampled individual i. Nonresponse can be handled

using nonresponse weights γi = 1/υi, which analogously can be thought of as

the number of sampled individuals represented by the ith recorded individual.

Multiplying the design and nonresponse weights gives survey weights ωi = δi × γi.

Extending Equation (3.28), a weighted estimate (Hájek 1971) of the population

mean using the survey weights ωi is

Ḡω =
∑N
i=1 ωiRiG(yi)∑N

i=1 ωiRi

. (3.32)
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Following Meng (2018) and Bradley et al. (2021), decomposing the additive error

Ḡω − Ḡ of Equation (3.32) provides useful intuition as to the benefits of survey

weighting (M. A. Bailey 2023). Under SRS then, the error is a product of three terms

Ḡω − Ḡ = E(ωiRiGi)
E(ωiRi)

− E(Gi) = C(ωiRiGi)
E(ωiRi)

(3.33)

= ρRω ,G ×
√
N −mRω

mRω

× σG, (3.34)

where Rω = ωR. The first term is called the data defect correlation (DDC), and

measures the correlation between the weighted recording mechanism and given

function of the outcome of interest. The DDC is minimised when G ⊥⊥ Rω. The

second term is the data scarcity, and measures the effective proportion of the

population who have been recorded. Finally, the third term is the problem difficulty,

and measures the intrinsic difficulty of the estimation problem. This term is

independent of the sampling or analysis method used.

This thesis uses hierarchical Bayesian models defined using weighted direct

survey estimates (Fay and Herriot 1979). Following C. Chen et al. (2014), the

sampling distribution of these direct estimates is arrived at by estimating the

variance of Equation (3.32). Although this approach acknowledges the complex

survey design, it has some important limitations. Importantly, it ignores clustering

structure within the observations i. Furthermore, as a two-step procedure, it fails

to fully propagate uncertainty from a Bayesian perspective. While progress has

been made in dealing with survey data, the Gelman (2007) claim that “survey

weighting is a mess” still holds some weight.
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Models for areal spatial structure

This chapter is about spatial random effect model specifications for areal data. A

simple model based on the adjacency structure between areas is popular in HIV

small-area estimation and beyond. The analysis aimed to determine if using a more

complex model would result in more accurate predictions.

Modelling spatial correlation is particularly important for small-area estimation

of HIV because the covariates most strongly associated with HIV, such as sexual

behaviour and STI status (Benjamin K. Mayala et al. 2020), are difficult to measure.

As a result, previous small-area models of HIV have found including covariates

only modestly improve predictive performance (Supplementary Figure 20, Dwyer-

Lindgren, Cork, et al. 2019). The lack of predictive covariates emphasises the role of

modelling spatial variation. For mapping of other infectious diseases, such as Malaria

where transmission is driven by more predictive and easily measurable environmental

factors, explanatory covariates are more easily available and directly modelling

spatial correlation is less important (Daniel J Weiss et al. 2015; Bhatt et al. 2015).

Spatial variation in areal data is often modelled using spatial random effects

(Haining 2003; Cramb et al. 2018). The most common class of models used

to specify spatial random effects are Gaussian Markov random fields [GMRFs;

Havard Rue and Held (2005)]. These models combine a Gaussian distribution

38



Models for spatial structure

with Markov conditional independence assumptions between areas. Observations

in areas close together are assumed to be related, with more distant relationships

not directly accounted for. Perhaps the simplest GMRF model is that of Besag

et al. (1991) in which information is borrowed equally from each adjacent area,

based on a binary relationship. The Besag model is attractive as it requires

minimal additional modelling choices and is accessibly implemented in software

such as R-INLA (Blangiardo et al. 2013), rstan (M. Morris et al. 2019; Donegan

2022), NIMBLE [Chapter 9; de Valpine et al. (2023)] and PyMC (Saunders 2023),

among others. As a result, it has been widely used, including to model bird

population dynamics from capture-recapture data (Saracco et al. 2010); for the

analysis of magnetic resonance images (Gössl et al. 2001; Schmid et al. 2006); to

map mortality from cancers (Rashid et al. 2023), injuries (Parks et al. 2020), and air

pollution (Bennett et al. 2019); and to model alcohol use patterns (Dwyer-Lindgren,

A. D. Flaxman, et al. 2015).

The Besag model was designed for image analysis, on a regular grid. However,

for more irregular geometries, the assumptions made are unrealistic and appear to

be violated. The administrative divisions of a country used in small-area estimation

are one example of a more irregular geometry. This chapter tests the hypothesis that

using more realistic assumptions about spatial structure improves the performance

of small-area estimation models. Performance in this context refers to accurate

forecasts of parameters as measured by scoring rules. In doing so, practical recom-

mendations for modelling areal spatial structure are offered. Code for the analysis

in this chapter is available from https://github.com/athowes/beyond-borders,

and supported by the arealutils R package (Howes 2023a).

4.1 Models based on adjacency

This section discusses spatial random effect models based on a symmetric adjacency

relation i ∼ j between areas Ai and Aj. Adjacency is typically defined by a shared

border, though other choices are possible (Christopher J Paciorek et al. 2013).
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Figure 4.1: Panel A shows the districts of Zimbabwe. Panel B shows the corresponding
adjacency graph G with vertices positioned at the centre of the area they correspond to,
and edges between adjacent areas.

4.1.1 The Besag model

The Besag model (Besag et al. 1991) is an improper conditional auto-regressive

(ICAR) model where the conditional mean of the random effect ui is the average of

its neighbours {uj}j∼i and the precision is proportional to the number of neighbours.

The full conditional distribution of the ith spatial random effect is given by

ui | u−i ∼ N

 1
nδi

∑
j:j∼i

uj,
1

nδiτu

 , (4.1)

where δi is the set of neighbours of Ai with cardinality nδi = |δi| and u−i is the

vector of spatial random effects with the ith entry removed. By Brook’s lemma

(Havard Rue and Held 2005) the set of full conditionals of the Besag model is

equivalent to the Gaussian Markov random field (GMRF) given by

u ∼ N (0, τ−1
u R−). (4.2)

The matrix R− is the generalised inverse of the rank-deficient structure matrix

R with entries

Rij =


nδi, i = j

−1, i ∼ j

0, otherwise.
(4.3)
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The Markov property arises due to the conditional independence structure p(ui | u−i) =

p(ui | uδi) whereby each area only depends on its neighbours. This is reflected in

the sparsity of R such that ui ⊥ uj | u−ij if and only if Rij = 0. The structure

matrix R may also be expressed as the Laplacian matrix of the adjacency graph

G = (V , E) with vertices v ∈ V corresponding to each area and edges e ∈ E

between vertices i and j when i ∼ j. Figure 4.1 shows the districts of Zimbabwe

with corresponding adjacency graph.

Rewriting Equation (4.2), the probability density function of u is

p(u) ∝ τ
n−nc

2
u × exp

(
−τu

2 u⊤Ru
)

∝ exp
−τu

2
∑
i∼j

(ui − uj)2

 . (4.4)

This density is a function of the pairwise differences ui − uj and so is invariant to

the addition of a constant c to each entry p(u) = p(u + c1). As a result, there

is an improper uniform distribution on the average of the ui. If G is connected,

in that by traversing the edges, any vertex can be reached from any other vertex,

then there is only one impropriety in the model and rank(R) = n − 1, while if

G is disconnected, and composed of nc ≥ 2 connected components with index

sets I1, . . . , Inc , then the corresponding structure matrix R has rank n − nc and

the density is invariant to the addition of a constant to each of the connected

components p(uI) = p(uI + c1) where I = I1, . . . , Inc .

4.1.2 Best practises for the Besag model

Directly using the Besag model as described in Section 4.1.1 has several practical

limitations in applied settings. To overcome these limitations, Freni-Sterrantino

et al. (2018) recommend three best practices:

1. The structure matrix R should be rescaled to have generalised variance equal

to one. The generalised variance of a matrix is defined by the geometric mean

of the diagonal elements of its generalised inverse. For the structure matrix

that is

σ2
GV(R) =

n∏
i=1

(R−
ii )1/n = exp

(
1
n

n∑
i=1

log(R−
ii )
)
. (4.5)
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The scaled structure matrix R⋆ is given by

R⋆ = R/σ2
GV(R). (4.6)

As the diagonal elements R−
ii correspond to marginal variances, the generalised

variance gives a measure of the average marginal variance. This measure,

introduced by Sigrunn Holbek Sørbye and Håvard Rue (2014), ignores off-

diagonal entries. More broadly, other measures of typical variance could be

used.

Scaling mitigates the influence of the adjacency graph on the variance of u.

For consistent and interpretable prior distribution selection, it is important

to allow the variance to be controlled by τu alone.

When the adjacency graph is disconnected it is not appropriate to scale the

structure matrix R uniformly. This is because, given the precision τu, local

smoothing operates on each connected component independently. As such,

each connected component I = I1, . . . , Inc should be scaled independently to

have generalised variance one

R⋆
I = RI/σ

2
GV(RI) (4.7)

where RI is the sub-matrix of the structure matrix corresponding to index

set I.

2. When one of the connected components is a single area, known either as a

singleton or an island, the probability density

p(ui) ∝ exp
−τu

2
∑
i∼j

(ui − uj)2

 ∝ 1 (4.8)

has no dependence on ui. This is equivalent to using an improper prior. To

avoid this, each singleton should be set to have independent Gaussian noise

p(ui) ∼ N (0, τ−1
u ).
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3. To avoid confounding of the spatial random effects with the intercept, it

is recommended to place a sum-to-zero constraint on each non-singleton

connected component. In other words,

∑
i∈I

ui = 0, |I| > 1. (4.9)

As such, in total the number of sum-to-zero constraints equals to the number

of non-singleton connected components.

4.1.3 Concerns about the Besag model

The Besag model was originally proposed by Besag et al. (1991) for use in image

analysis. In this setting, areas correspond to pixels arranged in a regular lattice

structure. In an image, the data point at each pixel can be thought of as an average

of the intensity or colour over the space represented by the pixel.

Since its original proposal, the Besag model has seen wider use. However, for

small-area estimation of HIV, the spatial structure corresponds to administrative

units. These administrative units may have a more irregular spatial structure than

a lattice. Furthermore, data points may not come about by uniform averaging over

a space. For example, population density may vary across the area.

These considerations raise concerns about the Besag model’s applicability to the

small-area estimation setting, which we explore in this section. The discussion is

closely linked to the modifiable areal unit problem (Openshaw and P. Taylor 1979),

whereby statistical conclusions change as a result of seemingly arbitrary changes

in data aggregation, and the challenge of ecological inference and the ecological

fallacy (Jonathan Wakefield and Lyons 2010).

4.1.3.1 Compression to adjacency

A fundamental objection is that summarising a geometry by an adjacency graph

represents a loss of information. Many geometries share the same adjacency graph,

and as such are isomorphic under the Besag model (Figure 4.2). Though not in
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A

1 2 3

B

1 2 3

C

1 2 3

D

1 2 3

Figure 4.2: Though they are quite different, the geometries shown in panels A, B, C,
and D each have the same adjacency graph. Therefore, each geometry would have the
same distribution under the Besag model.

itself a problem, this fact prompts consideration whether the class of geometries

with the same adjacency graph is sufficiently similar to merit identical models.

Intuitively, the more regular the spatial structure, the less information is lost in

compression to an adjacency graph. In image analysis, very little spatial information

is lost in compression of a lattice structure to an adjacency graph. On the other

hand, the regions of a country, determined by political and geographic forces, tend

to display greater irregularity. The appropriateness of adjacency compression varies

therefore by the type of geometry common to the application setting.

The regularity of realistic geometries may help to constrain each class to be

similar. In other words, although pathological geometries can be constructed, they

might be implausible in statistical practice and so of limited concern.

4.1.3.2 Mean structure

In the Besag model all adjacent areas count equally in the equation for the

conditional mean. This assumption is unsatisfying, as for most geometries we expect

different amounts of correlation between neighbouring areas. Figure 4.2 illustrates a

number of heuristic features for neighbour importance. In Panel 4.2C, the area with

a longer shared border would be expected to be more highly correlated. In Panel

4.2D, the area with a closer centre would be expected to be more highly correlated.

4.1.3.3 Variance structure

In Equation (4.1) the precision of ui is proportional to its number of neighbours

nδi. It follows that as nδi → ∞ then Var(ui) → 0. This is illustrated by Figure
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1 2 1

2

3

1

2

3

4

· · ·

Figure 4.3: A sequence of geometries where the number of neighbours of area one
grows by one at each iteration, as the shaded area is split into more areas. In the limit,
the precision of the spatial random effect in the first area tends to infinity. This is not
reasonable behaviour if the amount of information being shared is not also increasing.

A

1 2 3 4

B

1 2 3a 3b 4a 4b

Figure 4.4: Each of the shaded areas in the geometry in Panel A are split into two in
Panel B.

4.3 where the area on the right is repeatedly divided such that its number of

neighbours increases. This property is a consequence of averaging the conditional

mean over a greater number of areas, which, in certain situations, can correspond

to a greater amount of information. However, if the amount of information in the

shaded area remains fixed, it is inappropriate that Var(u1) should tend to zero as a

result of drawing additional, arbitrary, boundaries. In the image analysis setting

this modelling assumption is reasonable: each pixel represents a fixed amount of

information and a higher pixel density represents a greater amount of information.

On the other hand, in public health and epidemiology, drawing boundaries to create

additional areas is not expected to correspond to a greater amount of information.

As a second example of undesirable behaviour, suppose we fit a Besag model

upon identical data using each of the two geometries in Figure 4.4. If the spatial

variation is relatively smooth, dividing the shaded areas into two will result in a

lower estimated variance σ2
u in Panel 4.4B as compared with Panel 4.4A because

there will appear to be less variation between neighbouring areas. This problem
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does not only apply locally: since the effect of σ2
u applies everywhere, the smoothing

will change even in unaltered parts of the study region.

4.1.4 Weighted ICAR models

The Besag model is a special case of a more general class of (zero-mean) weighted

ICAR models. These models can be specified in terms of scaled weights {bij}j∼i
and a precision vector κ = (κi)i∈[n]. The full conditionals are then

ui | u−i ∼ N

∑
j:j∼i

bijuj,
1
κiτu

 . (4.10)

Setting bij = 1/nδi and κi = nδi recovers the Besag model in Equation (4.1).

The structure matrix R corresponding to the more general full conditionals in

Equation (4.10) is

R = Dκ(I − B), (4.11)

where the unscaled weights matrix B has elements

Bij =
bij, for i ∼ j,

0, for i = j, i ≁ j.
, (4.12)

and the matrix Dκ is given by diag(κ1, . . . , κn). Ensuring that the structure matrix

is symmetric requires that for all i, j ∈ [n]

−bijκi = −bjiκj. (4.13)

To meet this condition, it can be simpler to directly consider symmetry of the

unscaled weights matrix

W = DκB, (4.14)

such that R = Dκ − W. For the Besag model the unscaled weights matrix

W corresponds to the adjacency matrix. Scaled weights can be recovered by

bij = wij/κi where κi = ∑
k:k∼iwik. Duncan et al. (2017) provide discussion of

methods for specifying W, including

wij =
(

1
dij

)
, (4.15)

wij = exp(−dij). (4.16)
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Weighted ICAR models appear to overcome some of the limitations discussed

in Section 4.1.3.

4.1.5 The reparameterised Besag-York-Mollié model

Often, as well as spatial correlation, there exists IID over-dispersion in the residuals

and it is inappropriate to use purely spatially structured random effects in the

model. The Besag-York-Mollié (BYM) model of Besag et al. (1991) accounts

for this in a natural way by decomposing the spatial random effect u = v + w

into a sum of an unstructured IID component v and a spatially structured Besag

component w. Each component has its own respective precision parameter τv

and τw. The resulting distribution is

u ∼ N (0, τ−1
v I + τ−1

w R−). (4.17)

Including both v and w is intended to enable the model to learn the relative extent

of the unstructured and structured components via τv and τw.

However, in the BYM model, scaling of the Besag precision matrix Q is not

taken into account despite this issue being particularly pertinent when dealing with

multiple sources of noise. In particular, placing a joint prior distribution

(τv, τw) ∼ p(τv, τw) (4.18)

which does not privilege either component is more easily accomplished if Q and

I have the same scale. Additionally, supposing one has a prior belief that the

over-dispersion is primarily IID and v accounts for the majority of the dispersion,

then it is not immediately obvious how to represent this belief, without inadvertently

altering the prior distribution on the amount of overall variation. This highlights

identifiability issues of the parameters (τv, τw) resulting from their non-orthogonality.

Building on the models of Leroux et al. (2000) and C. Dean et al. (2001) which

tackle this identifiability problem, but do not scale the spatially structured noise,
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Simpson et al. (2017) propose a reparameterisation (τv, τw) 7→ (τu, ϕ) of the BYM

model. This is known as the BYM2 model and given by

u = 1
τu

(√
1 − ϕv +

√
ϕw⋆

)
, (4.19)

where τu is the marginal precision of u, ϕ ∈ [0, 1] gives the proportion of the marginal

variance explained by each component, and w⋆ is a scaled version of w with precision

matrix given by the scaled structure matrix R⋆. When ϕ = 0 the random effects

are IID, and when ϕ = 1 the random effects follow the Besag model. To borrow

an analogy (Håvard Rue 2020) the parameterisation (τv, τw) is like having one hot

water and one cold water tap, whereas the parameterisation (τu, ϕ) is like a mixer

tap where the amount of water and its temperature can be adjusted separately.

Although the BYM and BYM2 models were originally proposed using the

Besag model as the spatially structured component, this need not be the case.

Indeed, more broadly it is reasonable to consider convolved random effects (of a

form analogous to that in Equation (4.17) or (4.19)) with any model for spatially

structured noise. Any limitations of the model for spatially structured random

effects are inherited by the convolved random effects.

4.2 Models using kernels

Section 4.1 reviewed ways to construct spatial random effect precision matrices

using an adjacency relation. An alternate approach is to define the covariance

matrix using an areal kernel function which gives a measure of similarity between

two areas. Such a function may be specified as

K : P(S) × P(S) → R, (4.20)

where P denotes the power set such that P(S) is the space of subsets of the

study region. If the function K is positive semi-definite, then define areal kernel

spatial random effects by

u ∼ N
(

0, 1
τu

K
)
, (4.21)
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where the n× n Gram matrix K with entries Kij = K(Ai, Aj) is a valid covariance

matrix. The precision parameter τu is placed outside of the Gram matrix, analogous

to the relation of the precision and structure matrices, but could be omitted. Areal

kernels may be thought of as a type of kernels on sets (Gärtner et al. 2002).

It is challenging to think directly about the correlation structure between areas.

Instead, most well-known spatial process models define the correlation structure

between points using a kernel function

k : S × S → R. (4.22)

A simple method, and the one considered here henceforth, is to construct K

(Equation (4.20)) from k (Equation (4.22)) by averaging the kernel k computed

on some number of points representing each area. In Section 4.2.1 one point is

used, and in Section 4.2.2 multiple points are used.

4.2.1 Centroid kernel

The simplest approach is to use a single point to represent each area such that

K(Ai, Aj) = k(pi, pj). (4.23)

A natural choice is the centroid pi = ci, given by the arithmetic mean of the latitude

and longitude. (Note that it is not guaranteed for the centroid to lie within the

area i.e. it is possible ci /∈ Ai, and more generally points representing an area may

not be contained by that area.) This choice results in the centroid kernel

K(Ai, Aj) = k(ci, cj). (4.24)

The centroid kernel has been used in environmental epidemiology (Wakefield and

S. Morris 1999), for US election modelling (S. R. Flaxman et al. 2015), and to model

the reproduction number of COVID-19 (Teh et al. 2022). In a model comparison

study Nicky Best et al. (2005) (Section 3) simulated data representing heterogeneous

exposure to air pollution, including elevated rates of exposure near two hypothetical

point source locations, and found that the centroid kernel tended to over-smooth the

high-risk areas. That said, it is unsurprising that a stationary covariance function

would struggle to recover non-stationary structure.
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4.2.2 Integrated kernel

Rather than choosing a single representative point, an alternative is to more

completely represent the area by integrating the kernel over the areas of interest

(Kelsall and Jonathan Wakefield 2002; Follestad and Håvard Rue 2003). This

results in the integrated kernel

K(Ai, Aj) = 1
|Ai||Aj|

∫
Ai

∫
Aj

k(s, s′)dsds′. (4.25)

Unlike for the centroid kernel where Kii = 1 for all i, the marginal variance

of the ith spatial random effect Kii = K(Ai, Ai) varies depending on the area:

becoming smaller for more compact areas and larger for areas which are of greater

extent or more spread out.

This covariance structure is equivalent to that obtained by aggregating a spatially

continuous Gaussian process with kernel k over the areal partition. In the machine

learning literature, models of this kind have been studied under the name aggregated

Gaussian processes (Law et al. 2018; Tanaka et al. 2019; Yousefi et al. 2019;

Hamelijnck et al. 2019; Chau et al. 2021). Examples of use of this model in

statistical practice are rare.

4.2.2.1 Accounting for heterogeneity

Additional information accounting for heterogeneity over Ai may be incorporated

into the integrated kernel. This can be accomplished using weighting distributions

{wi} which represent an unequal contribution of each point to the similarity measure.

The weighted integrated kernel is given by

K(Ai, Aj) = 1
|Ai||Aj|

∫
Ai

∫
Aj

wi(s)wj(s′)k(s, s′)dsds′. (4.26)

This areal kernel may be useful in disease mapping. For example, areas with

populations who live close to a shared border are likely to be more strongly

correlated than areas whose populations live far apart. This detail could be

accounted for by weighting according to a high resolution measure of population

density. Though e.g. weighted centroids may also be used in Equation (4.24),
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Figure 4.5: The n = 33 districts of Malawi. Panel A shows the centroids as in Section
4.2.1. Panel B shows Li = 10 randomly chosen points, Panel C hexagonal points, and
Panel D grid points in each area, each generated using the sf::st_sample function
(E. Pebesma 2018).

accounting for heterogeneity over an area is more natural within the integrated

kernel than the centroid kernel.

4.2.2.2 Computation

Most of the time it is not possible to calculate Equation (4.26) analytically.

Instead, consider n collections of Li samples {s(i)
l }Li

l=1 ∼ U(Ai) drawn uniformly

from each area. Then the integral may be approximated using Monte Carlo

by the double sum

K(Ai, Aj) ≈ 1
LiLj

Li∑
l=1

Lj∑
m=1

wi
(
s

(i)
l

)
wj
(
s(j)
m

)
k
(
s

(i)
l , s

(j)
m

)
. (4.27)

Equivalently, samples drawn from Wi may be used without weighting by wi(s).

Nodes may also be selected deterministically to give a numerical quadrature estimate

of the kernel. Figure 4.5 shows three possible ways of choosing points s(i)
l , together

with the centroids approach.

Computing the n × n Gram matrix K requires

O(
n∑
i=1

n∑
j=1

LiLj) (4.28)

51



Models for spatial structure

evaluations of the kernel k. This imposes a significant computational cost if the

Gram matrix is often recomputed during inference. For example, during MCMC

when the kernel has hyperparameters which are learnt then the Gram matrix is

recomputed for each proposed set of hyperparameters. As such, there is a limit on

the size of Li which it is feasible to use. Kelsall and Jonathan Wakefield (2002)

encounter this challenge, and take the approach of using a discrete hyperparameter

prior to reduce the number of Gram matrix constructions and inversions required.

4.2.2.3 Connection to log-Gaussian Cox processes

The log-Gaussian Cox Process framework (Diggle, Moraga, et al. 2013) arrives

naturally at the integrated kernel formulation (Li et al. 2012). A Cox process is

an inhomogeneous Poisson process with a continuous stochastic intensity function

{x(s), s ∈ S} such that conditional on the realisation of x(s) the number of points

in any area Ai follows a Poisson distribution. The rate parameter of this Poisson

distribution is explicitly aggregated as follows

yi |x(s) ∼ Poisson
(∫

s∈Ai

x(s)ds
)
. (4.29)

In a LGCP the log intensity log x(s) = η(s) is modelled using a Gaussian process

prior η(s) ∼ GP(µ(s), k(s, s′)). O. Johnson et al. (2019) obtain Equation (4.26) by

considering a discrete Poisson log-linear mixed model approximation to a continuous

LGCP, whereby η(s) is approximated by a piecewise constant ηi = µi + ui in each

area Ai. The ith discrete spatial random effect is then ui =
∫
Ai
wi(s)u(s)ds,

with covariance structure

Cov
(∫

Ai

wi(s)u(s)ds,
∫
Aj

wj(s′)u(s′)ds′
)

=
∫
Ai

∫
Aj

wi(s)wj(s′)k(s, s′)dsds′,

(4.30)

corresponding to an areal integrated kernel with a logarithmic link function and

Poisson likelihood.

52



Models for spatial structure

4.2.2.4 Connection to disaggregation regression

Disaggregation regression, also known as downscaling or interpolation, is another

closely related approach. Rather than focusing on the aggregate nature of areal

observations as a route towards better area-level estimates, disaggregation regression

aims to produce high-resolution or point-level estimates from areal observations

(Utazi et al. 2019; Arambepola et al. 2022; Nandi et al. 2023). These two tasks

are similar, and indeed it could be argued that accurate point-level estimates are

a necessary intermediate step towards accurate area-level estimates. However,

disaggregation regression is challenging without auxiliary covariate information,

and therefore unlikely to be applicable to small-area estimation of HIV.

4.3 Simulation study

This simulation study tests the ability of inferential models with varying spatial

random effect specifications to accurately recover small-area quantities. The data

and modelling choices were designed with a spatial epidemiology application in mind.

4.3.1 Synthetic data

Table 4.1: The three spatial random effect models used to generate synthetic data in
the simulation study (Section 4.3).

Model Details
IID u ∼ N (0, In)
Besag u ∼ N (0,R⋆−) as in Section 4.1.1
Integrated kernel (IK) u ∼ N (0,K⋆) as in Section 4.2.2 with Matérn kernel,

ν = 3/2, l = 2.5 and Li = 100 points per area

Data y = (yi)i∈[n] were simulated from a binomial likelihood yi ∼ Bin(mi, ρi).

The probabilities ρi ∈ [0, 1] were linked to linear predictors ηi ∈ R via

log
(

ρi
1 − ρi

)
= ηi = β0 + ui, i ∈ [n]. (4.31)
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Figure 4.6: Seven geometries were considered in the simulation study. These were the
four geometries from Figure 4.2 shown in Panel A, B, C and D, and three more realistic
geometries shown in Panel E, F and G.

Spatial random effects were generated according to three different models (Table

4.1). Sample sizes were fixed as mi = 25 for all i ∈ [n], the intercept parameter as

β0 = −2 and the spatial random effect precision parameter as τu = 1.

Seven geometries were considered (Figure 4.6). These included the four vignette

geometries from Figure 4.2 which share an adjacency graph. Three more realistic

geometries were included to represent plausible variation over spatial regularity

for the small-area estimation setting. From the most to the least spatially regular,

these geometries were: a 6 × 6 lattice grid; the 33 districts of Côte d’Ivoire; and

the 36 congressional districts of Texas. For each of the three spatial random

effect models and seven geometries 250 synthetic data were generated, resulting

in a total of 5250 synthetic data.

4.3.2 Inferential models
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Table 4.2: The spatial random effect models used for inference. Each model is
implemented in the arealutils R package (Howes 2023a). The BYM2 model was
implemented using the sparsity preserving parameterisation described in Section 3.2 of
Riebler et al. (2016).

Model Details
IID u ∼ N (0, τ−1

u In)
Besag u ∼ N (0, τ−1

u R⋆−) as in Section 4.1.1
BYM2 u = τ−1

u (
√

1 − π v +
√
πw⋆) as in Section 4.1.5 with

π ∼ Beta(0.5, 0.5)
FCK u ∼ N (0, τ−1

u K) with Kij = k(ci, cj) as in Section 4.2.1
with fixed length-scale l

CK u ∼ N (0, τ−1
u K) with Kij = k(ci, cj) as in Section 4.2.1

with length-scale prior distribution
l ∼ Inv-Gamma(a, b) with a, b set based on the
geometry

FIK u ∼ N (0, τ−1
u K) with Kij = K(Ai, Aj) as in Section

4.2.2 with hexagonal points (Panel 4.5C), Li = 10, and
fixed length-scale l

IK u ∼ N (0, τ−1
u K) with Kij = K(Ai, Aj) as in Section

4.2.2 with hexagonal points (Panel 4.5C), Li = 10, and
length-scale prior distribution l ∼ Inv-Gamma(a, b)
with a, b set based on the geometry

Eight inferential models were fit to the synthetic data (Table 4.2). Apart

from the spatial random effect specification, each inferential model corresponded

exactly to the simulation model.

4.3.2.1 Kernels

Gram matrices were computed using the Matérn kernel k : S × S → R (Stein

1999) given by

k(s, s′) = 1
2ν−1Γ(ν)

(√
2ν|s− s′|

l

)ν
Bν

(√
2ν|s− s′|

l

)
. (4.32)

In Equation (4.32):

• Bν is the modified Bessel function of the second kind;

• |s− s′| is the Euclidean distance between the point locations s and s′;

• ν is the smoothness hyperparameter;
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• l is the length-scale hyperparameter on the latitude-longitude scale.

We fixed the smoothness hyperparameter ν to 3/2 to avoid concerns regarding

the joint identifiability of the smoothness and lengthscale hyperparameters. This

value matches that used to simulate data, and simplifies Equation (4.32) as follows

k(s, s′) =
(

1 +
√

3|s− s′|
l

)
exp

(
−

√
3|s− s′|
l

)
. (4.33)

The number of points per area Li was set to 10 with a hexagonal spacing

structure (Panel 4.5C). The actual values of Li sometimes differed from 10 because

sf::st_sample with type = "hexagonal" does not guarantee exactly the specified

number of samples are returned (E. Pebesma 2018).

4.3.2.2 Prior distributions

A weakly informative half-Gaussian prior was placed on the standard deviation

such that σu ∼ N+(0, 2.52) (Gelman 2006). The value 2.5 avoids placing significant

prior density on the region σu > 5, which after logistic transformation would

facilitate undesirable variation on the probability scale very close to zero or one.

A weakly informative N (−2, 1) prior was placed on β0, setting most of the prior

probability density for logit−1(β0) within a range typical for a disease prevalence.

In cases where the length-scale l was fixed, it was set based on the geometry such

that points an average distance apart had 1% correlation (Best et al. 1999). In cases

where a prior distribution was set on the length-scale it was l ∼ Inv-Gamma(a, b),

with a and b chosen for each geometry such that 5% of the prior mass was below

the 5% quantile for distance between points and 5% of the prior mass was above

the 95% quantile (Betancourt 2017). The sensitivity analysis in Appendix A.2

illustrates the extent to which six possible lengthscale prior distributions (Figure

A.9) affect the lengthscale posterior distribution (Figure A.10).
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4.3.2.3 Inference

Approximate Bayesian inference was conducted using adaptive Gauss-Hermite

quadrature [AGHQ; Stringer et al. (2022)] with k = 3 quadrature points over a

marginal Laplace approximation via the aghq package (Stringer 2021). Models were

implemented using a Template Model Builder C++ template for the log-posterior

via the TMB package (Kristensen et al. 2016). Appendix A.1 compares posterior

mean and standard deviations from AGHQ to those obtained using the No-U-

Turn Sampler (NUTS) Hamiltonian Monte Carlo (HMC) algorithm run using Stan

(Carpenter et al. 2017) via the tmbstan package (Monnahan and Kristensen 2018).

4.3.3 Model assessment

Let the parameter ϕ have posterior marginal f(ϕ) = p(ϕ | y) with cumulative

distribution function F . Let ϕs be samples s ∈ [S] from f . Here, the number

of samples per posterior marginal was S = 200. Let ω be the true value of ϕ

used in the simulation.

The accuracy of latent field parameter and hyperparameter posterior marginals

from each model were assessed using three methods. These were the mean squared

error (MSE), the continuous ranked probability score [CRPS; Matheson and Winkler

(1976)], and the probability integral transform (PIT; Dawid (1984)) values.

The MSE is a simple and popular measure, calculated using samples as

MSE(f, ω) ≈ 1
S

S∑
s=1

(ϕs − ω)2. (4.34)

The CRPS is a strictly proper scoring rule (SPSR) which has favourable properties

and is often regarded as a default choice (Gneiting and Raftery 2007). Any scoring

rule which is not strictly proper rewards a misrepresentation of beliefs. The CRPS is

CRPS(f, ω) =
∫ ∞

−∞
(F (ϕ) − I{ϕ ≥ ω})2dϕ. (4.35)

The CRPS may be estimated using samples by

CRPS(f, ω) ≈ 1
S

S∑
s=1

|ϕs − ω| − 1
2S2

S∑
s=1

S∑
l=1

|ϕs − ϕl|. (4.36)
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A posterior marginal is calibrated if over repeated simulations the quantile of

the true value, known as the PIT value, is uniformly distributed such that

F (ω) ≈ 1
S

S∑
s=1

I{ϕi ≥ ω} = q ∼ U [0, 1]. (4.37)

If Equation (4.37) holds then at any given nominal coverage 1 − α the proportion

of quantile-based credible intervals containing ω is also 1 − α. Uniformity was

assessed using PIT histograms (Dawid 1984) and empirical cumulative distribution

function (ECDF) difference plots (Aldor-Noiman et al. 2013) with simultaneous

confidence bands as described in Säilynoja et al. (2022).

4.3.4 Results

4.3.4.1 Vignette geometries

As each geometry only had three areas, the sample size of 250 synthetic data

was insufficient to distinguish between inferential models for the vignette geometries.

Figures A.13, A.14, A.15 and A.16 show that almost all 95% credible intervals

for the mean CRPS in estimating ρi overlap.

Additionally, for the vignette geometries, both the heuristic method for fixing

a lengthscale, and lengthscale prior distribution, were misspecified. Three points

was insufficient to learn the lengthscale, and as such misspecification of the prior

distribution propagated to the posterior distribution (Figure A.11).

To produce higher resolution and more meaningful results, the simulation

study for the vignette geometries should be rerun. Two changes should be made.

First, an increase to the sample size. Second, more careful specification of study

with regard to the lengthscale.

4.3.4.2 Realistic geometries

The two problems with the vignette geometry study did not apply to the

more realistic geometries. Figures 4.7, 4.8 and 4.9 show mean CRPS values in

estimating ρi with 95% credible intervals which rarely overlap, and hence provide

meaningful findings. Mean MSE and CRPS values are provided in Tables A.2
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Figure 4.7: The mean CRPS in estimating ρi and its standard error for each inferential
model and simulation model on the grid geometry (Panel 4.6E). The mean value averages
over both areas and simulation runs.

and A.3. The mean values are an average over both the number of areas in each

geometry and the number of simulations run.

The mean CRPS varied substantially between the three models (Table 4.1) used

to simulate synthetic data. IID structure is harder to predict than spatial structure,

and to a lesser extent, Besag structure is harder to predict than IK. This observation

is explained by correlation structure making forecasting easier.

For IID synthetic data, the IID and BYM2 models performed well. The BYM2

model also performed almost as well as the Besag model on the spatially structured

synthetic data. Appendix A.3.2 shows that the BYM2 proportion parameter

successfully recovers either IID or spatial structure. Meanwhile, the IID model

performed poorly on spatially structured synthetic data.

The performance of kernel models on IID and Besag synthetic data diminished
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Figure 4.8: The mean CRPS in estimating ρi and its standard error for each inferential
model and simulation model on the Côte d’Ivoire geometry (Panel 4.6F). The mean value
averages over both areas and simulation runs.

with increasingly spatially irregular geometry. For the most part, differences

between the centroid and integrated kernel models were small, even for synthetic

data generated from the IK model. Only for the IK simulated data there was

a significant difference between the kernel models with a fixed lengthscale and

prior distribution set on the lengthscale.

Interpretation of CRPS choropleths (Figures 4.7, 4.8 and 4.9) was challenging

primarily due to two factors: varying scores by simulation model, and limited

sample size at the area-level. It would be relatively simple to remedy these

challenges, such that figures of this kind could help to uncover precise findings

about spatial random effect models.

For IID synthetic data, spatial models tend to produce “U”-shaped ECDF

difference plots (Figures A.28, A.29 and A.30). In other words, the quantile of the
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Figure 4.9: The mean CRPS in estimating ρi and its standard error for each inferential
model and simulation model on the Texas geometry (Panel 4.6G). The mean value averages
over both areas and simulation runs.

true value is too often near zero or one. This pattern corresponds to over-smoothing.
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4.4 HIV prevalence study

Simulation studies are a valuable tool for experimenting on models in controlled

environments. However, it is difficult to capture the complexity of a realistic applied

scenario using simulation. Therefore, it is important to complement simulation

studies with studies conducted on real data. To this end, model performance was

compared in estimating district-level HIV prevalence ρi ∈ [0, 1] in adults aged

15-49. Household survey data was used from across four countries in sub-Saharan

Africa (Table 4.3, Figure 4.10).

Table 4.3: The four PHIA household surveys included in the HIV prevalence study
(Section 4.4).

Country Survey Number of areas Analysis level
Côte d’Ivoire PHIA 2017 33 Regions
Malawi PHIA 2016 31 Health districts and

cities, with islands
removed

Tanzania PHIA 2017 26 Regions, with islands
removed

Zimbabwe PHIA 2016 60 Districts

4.4.1 Household survey data

Data from the most recent publicly available Population Health Impact Assessment

(PHIA) survey were used in each country. Let yij ∈ {0, 1} be the survey response

for individual j in area i. The survey designs used were complex in that each

individual had potentially unequal probabilities πij of being included in the survey.

Sampling weights

wij = 1
πij

(4.38)

were used to account for the complex survey design. The survey weighted preva-

lence in area i is

ρ⋆i =
∑
j wijyij∑
j wij

. (4.39)
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Figure 4.10: Adult (15-49) HIV prevalence from the most recent PHIA survey conducted
in Côte d’Ivoire (Panel A), Malawi (Panel B), Tanzania (Panel C), and Zimbabwe (Panel
D). These estimates are survey weighted according to Equation (4.39).

The effective number of cases y⋆i = ρ⋆i ·m⋆
i is given by the product of the weighted

prevalence, and the Kish effective sample size (Kish 1965)

m⋆
i =

(∑j wij)2∑
j w

2
ij

, (4.40)

and may be intuitively thought of as what would have been observed had the

survey been a simple random sample.

4.4.2 Inferential models

The inferential models used correspond to those in Section 4.3 with a small

modification. As before, prevalences ρi were modelled via logit(ρi) = β0 + ui

with spatial random effect specification varied according to Table 4.2. Due to survey

weighting, the effective number of cases y⋆i ∈ R and effective sample size m⋆
i ∈ R may

not be integers. Following C. Chen et al. (2014) a generalised binomial distribution

y⋆i ∼ xBin(m⋆
i , ρi) was used, with working likelihood for m⋆

i ≥ y⋆i given by

p(y⋆i |m⋆
i , ρi) = Γ(m⋆

i + 1)
Γ(y⋆i + 1)Γ(m⋆

i − y⋆i + 1)ρ
y⋆

i
i (1 − ρi)(m⋆

i −y⋆
i ). (4.41)
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Figure 4.11: In leave-one-out (LOO) cross-validation, one observation is left out of
the training data and predicted upon in each fold. The spatial-leave-one-out (SLOO)
cross-validation scheme considered here is similar, only differing in that observations
corresponding to adjacent areas are also left out of the training data.

4.4.3 Model comparison

Each model was assessed using (Figure 4.11):

1. a regular leave-one-out cross-validation (LOO-CV);

2. a spatial leave-one-out cross-validation (SLOO-CV).

At each fold the CRPS, MSE and quantile (as in Section 4.3.3) of posterior

predictive samples as compared with the observed data were computed. In this

section, the number of samples per posterior marginal was S = 1000.

4.4.4 Results

Table 4.4: The mean pointwise leave-one-out and spatial leave-one-out CRPS in
estimating ρi for each inferential model across the four considered PHIA surveys. The
units used in this table are thousandths. For standard errors, see Figure 4.12.

Continuous ranked probability score (units: 1/1000)
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PHIA survey IID Besag BYM2 FCK CK FIK IK
LOO
Côte d’Ivoire, 2017 6.6 6.6 6.7 6.7 6.9 6.9 6.9
Malawi, 2016 31.7 19.5 19.6 22.7 22.8 21.4 21.0
Tanzania, 2017 14.9 12.1 13.4 10.7 9.5 10.3 10.6
Zimbabwe, 2016 28.9 20.8 20.9 21.7 21.6 21.4 22.0
SLOO
Côte d’Ivoire, 2017 6.5 6.6 6.6 6.4 6.9 6.4 6.8
Malawi, 2016 31.6 19.3 19.9 26.5 29.0 25.1 28.3
Tanzania, 2017 14.9 12.1 18.1 16.0 17.6 15.4 16.9
Zimbabwe, 2016 29.1 20.8 25.2 26.7 26.2 26.1 26.3

The results (Figure 4.12, Table 4.4, Table A.4) for each survey were as follows:

1. For the 2017 PHIA survey in Côte d’Ivoire, all of the models performed

similarly, using both LOO- and SLOO-CV (Figure A.37). The pointwise

CRPS for all models was high at one outlying district in the survey, Grand-

Ponts. It is difficult to see how any spatial random model would perform well

in this situation, without additional covariates or using a distribution with

heavier tails than the Gaussian.

The CK and IK models had lengthscale posterior distributions largely un-

changed from their prior distribution (Figure A.31). This uncertainty in

lengthscale resulted in wide prevalence 95% credible intervals for the CK and

IK models in Figure A.33. This example shows the importance of being careful

using kernel models, and the prior distributions set on their hyperparameters.

It is surprisingly that this behaviour appears not to have resulted in poor

LOO or SLOO performance.

For this survey the BYM2 proportion posterior distribution was also similar to

its prior distribution, in contrast to each of the other surveys which had BYM2

proportion posteriors peaked at one, corresponding to spatially structured

noise (Figure A.32).

2. For the 2017 PHIA survey in Malawi the Besag and BYM2 models performed

the best, followed by the kernel models, and then the IID model (Figure A.38).
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Figure 4.12: The mean pointwise leave-one-out and spatial leave-one-out CRPS in
estimating ρi using each inferential model for the four PHIA surveys described in Table
4.3. The 95% credible intervals shown are generated using 1.96 times the standard error.

While the LOO and SLOO CRPS values for IID, Besag and BYM2 models

were similar, for the kernel models forecasting performance was substantially

reduced by leaving out adjacent districts. This finding is surprising, as the

kernel models make use of more distant correlations, and it is the adjacency-

based models that one would intuitively expect to be hampered more by the

SLOO-CV. For the IID model, that LOO and SLOO performance are similar

is no surprise as in all cases the IID model should be predicting the mean.

Though less data are available in the SLOO case, this should be of little

consequence.
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3. For the 2017 PHIA survey in Tanzania (Figure A.39), under LOO-CV the

kernel models performed better, but under SLOO-CV there was a significant

drop in performance.

4. Finally, for the 2016 PHIA survey in Zimbabwe, performance for each of the

spatially structured models was similar (Figure A.40). Again, under SLOO-

CV, performance of the BYM2 and kernel-based models dropped. Differences

within the kernel-based models for this survey, and indeed across all four

surveys, were limited.

4.5 Discussion

4.5.1 Modelling

Though there are situations where other models perform better, on the whole this

study supports the use of adjacency-based spatial random effect models. For the

study on HIV survey data, adjacency-based models performed well, if not the best,

in all cases. That is not to say that under data truly generated from a kernel model,

there isn’t significant benefit to using the corresponding kernel model for inference.

However, the transferability of this finding to applied settings is limited by the

following factors. First and foremost, it is usually impossible to know that real data

was generated from any particular process. Second, the synthetic data study used

the same kernel, Matérn with ν = 3/2 (Equation (4.32)), for both simulation and

inference, and as such represents a best-case. Third, specification of the lengthscale

prior distribution is challenging, and easy to do badly. Finally, aggregation via

the integrated kernel occurred at the level of the latent field, despite the fact that

most of the time we expect aggregation to occur at the level of the data. If the

link function g is the identity or linear then the two are equivalent, but non-linear

link functions create a discrepancy, which this study did not address.

This chapter did not consider use of the stochastic partial differential equation

(SPDE) approximation of Lindgren et al. (2011) as a potentially more compu-

tationally efficient way to implement integrated kernel models (K. Wilson and
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Jon Wakefield 2018). Though the underlying models are ultimately similar, that

is a continuous Matérn random field over space aggregated at an area-level, the

findings from this work are likely to apply to use of the SPDE approximation.

Nonetheless, it would be of value to confirm this empirically.

This chapter used area-level models to for data which arises by aggregation

of point-level data. However, Konstantinoudis et al. (2020) found that using a

point-level LGCP model rather than an area-level BYM model may have significant

benefits. The work in this chapter does not address the broader question of under

which circumstances use of an area or point-level model is sensible.

The adjacency-based models considered in this study were limited to the Besag

and BYM2 model. Although these are perhaps the most widely used adjacency-

based models, others could have been considered. Examples include the more

general weighted ICAR model discussed in Section 4.1.4. Additionally, it would

be of interest to implement the integrated kernel model with population-based

weighting (Section 4.2.2.1).

The models used for spatial structure in this chapter were all stationary.

Although stationarity assumptions may be violated by HIV survey data, it remains

challenging to estimate non-stationary spatial structure (Christopher J. Paciorek

and Schervish 2006).

4.5.2 Model comparison

Previous spatial random effect comparison studies (Nicky Best et al. 2005; D. Lee

2011) were limited to the DIC measure of model performance. Use of the DIC

is strongly discouraged by Vehtari, Gelman, et al. (2017). This study used less

flawed measures of model performance, such as the cross-validated CRPS. It would

be beneficial to compute the DIC and WAIC in Section 4.4 as a comparison.

Additionally, the measures used in this study were computed and presented by

individual area. With refinements to the sample sizes used, these area-specific

measures of performance could enable more nuanced conclusions about the use

of spatial random effect models.
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Cross-validation was performed using ρ as the forecasting target, rather than y

as is typical. This decision was made because applied interest is in forecasting HIV

prevalence at a district level, not forecasting the outcome of a household survey.

It could be argued that a district does not become more important to forecast

well by virtue of surveying a larger sample size in that district. That said, an

alternative viewpoint is that forecast accuracy should be incentivised in proportion

to district population size, such that PLHIV is accurately estimated. If sample size

is proportional to population size, then forecasting y could be a useful proxy. Choice

of the particular parameter, or transformation of that parameter (Nikos I Bosse

et al. 2023), to score is an ongoing topic of research.

The CRPS was used in preference to the log-score. Whereas the log-score

requires a kernel density estimate of the posterior distribution, and is therefore

sensitive to tuning parameters, the CRPS can be estimated from samples alone.

A downside of use of the CRPS and MSE is their relative lack of interpretability.

For example, it is difficult to determine whether a forecast is good, or suitable for

practical use, on the basis of its CRPS or MSE. Measures such as the skill score

have been used to contrast forecast performance with some baseline. A constant

model, with no random effects, could be used as such a baseline.

4.5.3 Inference

A strength of this work is that all of the inferential models (Table 4.2) in this

chapter were implemented in TMB. Inference was then conducted using AGHQ over

the marginal Laplace approximation using the aghq package. The accuracy of

inferences was compared to gold-standard results from NUTS obtained using the

tmbstan package. An earlier version of this study used R-INLA. Not all of the

inferential models were compatible with R-INLA, so rstan was used in some cases.

However, due to the difference in inference algorithm, this study design conflated

statistical models with inference algorithms. Consistent use of TMB, a fast and flexible

tool for spatial modelling (Osgood-Zimmerman and Jon Wakefield 2023), overcame

this limitation. Chapter 6 extends TMB to implement the INLA algorithm of R-INLA.
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5
A model for risk group proportions

This chapter describes an application of Bayesian spatio-temporal statistics to

small-area estimation of HIV risk group proportions. This work was conducted

in collaboration with colleagues from the MRC Centre for Global Infectious

Disease Analysis and UNAIDS. I developed the statistical model, building upon

an earlier version of the analysis conducted by Dr. Kathryn Risher. The model

and results for 13 countries are presented in Howes et al. (2023). Outputs are

implemented in a spreadsheet tool (https://hivtools.unaids.org/shipp/) for

use in national HIV response planning. The tool is being updated by inclusion

of more countries to the analysis, and extension of the methodology, including

to additional risk groups. Code for the analysis in this chapter is available from

https://github.com/athowes/multi-agyw and supported by the multi.utils

R package (Howes 2023b).

5.1 Background

In SSA, adolescent girls and young women (AGYW) aged 15-29 are at increased

risk of HIV infection. AGYW account for only 28% of the population, but comprise

44% of new infections (UNAIDS 2021a). HIV incidence for AGYW is 2.4 times

higher than for similarly aged (15-29) males. The social and biological reasons for
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Figure 5.1: Risk of acquiring HIV depends on both individual-level risk behaviour
and population-level HIV incidence. It is assumed here that with no individual-level
risk behaviour, there is no risk of acquiring HIV, independent of the population-level
HIV incidence. The risk scale is intended to be illustrative, rather than interpreted
quantitatively.

this disparity include structural vulnerabilities and power imbalances, age patterns

of sexual mixing, a younger age at first sex, and increased susceptibility to HIV

infection. On this basis, AGYW have been identified as a priority population for

HIV prevention services. Significant investments, including by the Global Fund

(The Global Fund 2018) and the DREAMS (Determined, Resilient, Empowered,

AIDS-free, Mentored, and Safe) partnership (Saul et al. 2018), have been made

to support prevention programming.

The Global AIDS Strategy 2021-2026 (UNAIDS 2021b) was adopted by the

United Nations (UN) General Assembly in June 2021, and “outlines the strategic

priorities and actions to be implemented by global, regional, country and community

partners to get on-track to ending AIDS”. It proposed stratifying HIV prevention

packages to AGYW based on two factors:

1. local population-level HIV incidence, and
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2. individual-level sexual risk behaviour.

Risk of acquiring HIV depends importantly on both factors. As such, prioritisa-

tion of prevention services is more efficient if both are taken into account. Figure

5.1 illustrates this fact stylistically. The strategy encourages programmes to define

targets for the proportion of AGYW to be reached with a range of interventions

(Table B.2) based on prioritisation strata which incorporate behavioural risk

(Table B.1). Implementation of the strategy by national HIV programmes and

stakeholders requires estimates of the population size and HIV incidence in each

risk group by location.

In this chapter, I used a Bayesian spatio-temporal model (Section 5.3) of

behavioural data from household surveys (Section 5.2) to estimate HIV risk group

proportions. To then estimate risk group specific HIV prevalence and HIV incidences

(Section 5.4), I combined the proportion estimates with population size, HIV

prevalence and HIV incidence estimates, as well as risk group specific HIV incidence

rate ratios, and HIV prevalence rate ratios. Finally, by ordering district, age,

risk group strata by HIV incidence, I estimated an upper bound for the number

of new HIV infections that could be averted under different risk prioritisation

strategies (Section 5.4.3).

5.2 Data

5.2.1 Behavioural data from household surveys

I used household survey data from 13 countries identified by the Global Fund

(The Global Fund 2018) as priority countries for implementation of AGYW HIV

prevention. These countries were Botswana, Cameroon, Kenya, Lesotho, Malawi,

Mozambique, Namibia, South Africa, Eswatini, Tanzania, Uganda, Zambia and

Zimbabwe. Surveys conducted in these countries between 1999 and 2018 were

included in which both women were interviewed about their sexual behaviour,

and sufficient geographic data were available to locate survey clusters to health

districts. There were 46 suitable surveys (Figure 5.2), with a total sample size
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Figure 5.2: Surveys conducted 1999-2018 that were used in the analysis by year,
survey type, sample size, and whether the survey included a specific question about
transactional sex. That is, whether the respondent had “had sex in return for gifts, cash
or anything else in the past 12 months”. Survey type included AIDS Indicator Surveys
(AIS), Demographic and Health Surveys (DHS), the Botswana AIDS Impact Survey 2013
(BAIS), and Population-based HIV Impact Assessment (PHIA) surveys.

of 274,970 women aged 15-29 years. Of the respondents, 103,063 were aged 15-

19 years, 92,173 were aged 20-24 years, and 79,734 were aged 25-29 years. The

median number of surveys per country was four, ranging from one in both Botswana

and South Africa to six in Uganda.

For each survey, respondents were classified into one of four behavioural risk

groups according to reported sexual risk behaviour in the past 12 months (Figure 5.3),

which I index by k. In increasing order of HIV acquisition risk, these risk groups were:

• k = 1: Not sexually active

• k = 2: One cohabiting sexual partner

• k = 3: Non-regular or multiple sexual partner(s), and

• k = 4: Reporting transactional sex.
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Table 5.1: HIV risk groups and HIV incidence rate ratios relative to AGYW with
one cohabiting sexual partner. The incidence rate ratio for women with non-regular or
multiple sexual partner(s) was derived from analysis of longitudinal data by Slaymaker
et al. (2020). Among female sex workers (FSW), the incidence rate ratio (25.0, 13.0, 9.0,
6.0, 3.0) depended on the level of HIV incidence among the general population (<0.1%,
0.1-0.3%, 0.3-1.0%, 1.0-3.0%, >3.0%), such that higher local HIV incidence in the general
population corresponded to a lower incidence rate ratio for FSW. Estimates of HIV
incidence rate ratios for FSW were derived by UNAIDS based on patterns of relative HIV
prevalence among FSW compared to general population prevalence.

Risk group Description Incidence rate ratio
None Not sexually active 0.0
Low One cohabiting sexual

partner
1.0 (baseline)

High Non-regular or multiple
partner(s)

1.72

Very High Reporting transactional
sex (later adjusted to
correspond to FSW)

3.0-25.0 (varied depending on
local HIV incidence)

The HIV incidence rate ratio RRk, used to calculate HIV incidence, was assumed

to vary by risk group (Table 5.1). The one cohabiting partner risk group was set as

baseline such that RR2 = 1. For the k = 4 risk group, the HIV incidence ratio ratio

was further assumed to vary by local HIV incidence among the general population.

Exact survey questions varied slightly across survey types and between survey

phases. Questions captured information about whether the respondent had been

sexually active in the past twelve months, and if so with how many partners. For

their three most recent partners, respondents were also asked about the type of

partnership. Possible partnership types included spouse, cohabiting partner, partner

not cohabiting with respondent, friend, sex worker, sex work client, and other. The

survey questions used are in Appendix B.4. In the case of inconsistent responses,

women were categorised according to the highest risk group they fell into, ensuring

that the categories were mutually exclusive.

Some surveys included a specific question asking if the respondent had received

or given money or gifts for sex in the past twelve months. In these surveys, 2.64%

of women reported transactional sex. In surveys without such a question, women
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k = 1:
Not sexually active

k = 4:
Reporting

transactional sex

k = 2:
One cohabiting
sexual partner

k = 3:
Non-regular or multi-
ple sexual partner(s)

Is the respondent
sexually active in

the past 12 months?

Has the respondent
been given gifts
or money for sex?

Does that partner live
in the same household
as the respondent?

Number of partners
of the respondent of
the past 12 months?

No

Yes

Yes

No

Yes1

> 1 No

Figure 5.3: Flowchart describing how respondents were classified to HIV risk groups
based on their survey responses.

almost never (0.01%) answered that one of their three most recent partners was a sex

work client. This incomparability made it inappropriate to include surveys without a

specific transactional sex question when estimating the proportion of the population

who engaged in transactional sex. Of the total 46 surveys included in the analysis,

12 had a specific transactional sex question, with a total sample size of 62,853

(28,753 aged 15-19 years, 26,324 aged 20-24 years, and 7,776 aged 25-29 years). The

sample size for women aged 25-29 is smaller because there were 6 DHS surveys

which excluded women 25-29 from the transactional sex survey question. Table B.3

gives the sample size by age group for every survey included in the analysis.

5.2.2 Other data

In addition to the household survey behavioural data, I used estimates of population,

PLHIV and new HIV infections stratified according to district and age group from

HIV estimates published by UNAIDS that were developed using the Naomi model

(Jeffrey W Eaton et al. 2021). I used the most recent 2022 estimates for all countries,

apart from Mozambique where, due to data accuracy concerns, I used the 2021

estimates (in which the Cabo Delgado province is excluded due to disruption

by conflict). I used administrative area hierarchy and geographic boundaries
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corresponding to those used for health service planning by countries (Table B.5).

Exceptions were Cameroon and Kenya, where I conducted analyses one level higher

at the department and county levels, respectively.

5.3 Model for risk group proportions

Owing to the incomparability in estimating the k = 4 risk group across surveys, I

took a two-stage modelling approach to estimate the four risk group proportions.

Denote being in either the third or fourth risk group as k = 3+. First, using all the

surveys, I used a spatio-temporal multinomial logistic regression model to estimate

the proportion of AGYW in the risk groups k ∈ {1, 2, 3+}. This model is described

in Section 5.3.1. Then, using only those surveys with a specific transactional sex

question, I fit a spatial logistic regression model to estimate the proportion of

those in the k = 3+ risk group that were in the k = 3 and k = 4 risk groups

respectively. This model is described in Section 5.3.2.

5.3.1 Spatio-temporal multinomial logistic regression

Let i ∈ {1, . . . , n} denote districts partitioning the 13 studied AGYW priority

countries c[i] ∈ {1, . . . , 13}. Consider the years 1999-2018 denoted as t ∈ {1, . . . , T},

and age groups a ∈ {15-19, 20-24, 25-29}. Let pitak > 0 with ∑3+

k=1 pitak = 1, be

the probabilities of membership of risk group k.

5.3.1.1 Multinomial logistic regression

A standard multinomial logistic regression model (e.g. Gelman, Carlin, et al.

2013) is specified by

yita = (yita1, . . . , yita3+)⊤ ∼ Multinomial(mita; pita1, . . . , pita3+), (5.1)

log
(
pitak
pita1

)
= ηitak, k = 2, 3+, (5.2)

where the number in risk group k is yitak, the fixed sample size is mita = ∑3+

k=1 yitak,

and k = 1 is chosen as the baseline category. This model is not a latent Gaussian
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model [LGM; Håvard Rue, Martino, and Chopin (2009)] because each observa-

tion yitak for k ∈ {1, 2, 3+} depends non-linearly on multiple structured additive

predictors {ηitak, k = 1, 2, 3+}.

The model, defined over 940 districts, 20 years, 3 age groups, and 3 risk groups,

is too large for MCMC to be tractable in reasonable time. To recast this model as an

LGM, I used the multinomial-Poisson transformation (detailed in Section 5.3.1.2).

This modification allowed inference to be performed using the INLA (Håvard Rue,

Martino, and Chopin 2009) algorithm via the R-INLA package (Martins et al. 2013).

5.3.1.2 The multinomial-Poisson transformation

The multinomial-Poisson transformation (Baker 1994) reframes a given multino-

mial logistic regression model, like that described in Equations (5.1) and (5.2), as

an equivalent Poisson log-linear model. The equivalent model is of the form

yitak ∼ Poisson(κitak), (5.3)

log(κitak) = ηitak. (5.4)

The basis of the transformation is that conditional on their sum Poisson counts are

jointly multinomially distributed (McCullagh and Nelder 1989) as follows

yita |mita ∼ Multinomial
(
mita;

κita1

κita
, . . . ,

κita3+

κita

)
, (5.5)

where κita = ∑3+

k=1 κitak. The probabilities pitak may then be obtained using the

softmax function

pitak = exp(ηitak)∑3+
k=1 exp(ηitak)

= κitak∑3+
k=1 κitak

= κitak
κita

. (5.6)

Under the equivalent model, in Equation (5.3) the sample sizes mita are treated

as random rather than fixed such that

mita =
∑
k

yitak ∼ Poisson
(∑

k

κitak

)
= Poisson (κita) . (5.7)
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Using Equations (5.5) for p(yita |mita) and Equation (5.7) for p(mita), the joint

distribution is given by

p(yita,mita) = exp(−κita)
(κita)mita

mita!
× mita!∏

k yitak!
∏
k

(
κitak
κita

)yitak

(5.8)

=
∏
k

(
exp(−κitak) (κitak)yitak

yitak!

)
(5.9)

=
∏
k

Poisson (yitak |κitak) . (5.10)

As expected, Equation (5.10) corresponds to the product of independent Poisson

likelihoods defined in Equation (5.3). This exercise demonstrates that the Poisson

log-linear model contains within it a multinomial likelihood, with a Poisson prior

on the sample size.

For this model to be equivalent to a multinomial logistic regression model,

the normalisation constants mita must be recovered exactly. That is to say, their

posterior distributions should be as close as possible to a Dirac delta distribution with

value zero everywhere but the known value of the sample size. To ensure that this is

the case, observation-specific random effects θita can be included in the equation for

the linear predictor. Multiplying each of {κitak}3+
k=1 by exp(θita) has no effect on the

category probabilities, but does provide the necessary flexibility for κita to recover

mita exactly. Although in theory an improper prior distribution θita ∝ 1 should be

used, I found that in practice, by keeping ηita otherwise small using appropriate

constraints, so that arbitrarily large values of θita are not required, it is sufficient

(and practically preferable for inference) to instead use a vague prior distribution.

5.3.1.3 Model specifications

I considered four models (Table 5.2) for ηita in the equivalent Poisson log-

linear model of the form

ηita = θita + βk + ζc[i]k + αac[i]k + uik + γtk. (5.11)

Observation random effects θita ∼ N (0, 10002) with a vague prior distribution

were included in all models to ensure the multinomial-Poisson transformation was
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valid. To capture country-specific proportion estimates for each category, I included

category random effects βk ∼ N (0, τ−1
β ) and country-category random effects ζck ∼

N (0, τ−1
ζ ). Heterogeneity in risk group proportions by age was allowed by including

age-country-category random effects αack ∼ N (0, τ−1
α ). Several specifications were

considered for the space-category uik and time-category effects γtk, described in

Sections 5.3.1.3 and 5.3.1.3.

Table 5.2: Four multinomial regression models were considered. Observation random
effects θita, included in all models, are omitted from this table.

Category βk Country ζck Age αack Spatial uik Temporal γtk
M1 IID IID IID IID IID
M2 IID IID IID Besag IID
M3 IID IID IID IID AR1
M4 IID IID IID Besag AR1

Use of the multinomial-Poisson transformation required all random effects to

include interaction with category k, because any random effects which did not

include interaction with category would give no change in category probabilities.

The only exception were the observation random effects, which were included as a

device to ensure the transformation is valid, rather than to model the data.

Spatial random effects For the space-category random effects uik I considered

two specifications:

1. Independent and identically distributed (IID) uik ∼ N (0, τ−1
u ),

2. The Besag improper conditional autoregressive (ICAR) model (Besag et al.

1991) grouped by category

u = (u11, . . . , un1, . . . , u13+ , . . . un3+)⊤ ∼ N (0, (τuR⋆
u)−).

The scaled structure matrix R⋆
u = R⋆

b ⊗ I is given by the Kronecker product

of the scaled Besag structure matrix R⋆
b and the identity matrix I, and A−

denotes the generalised matrix inverse of A I followed best practices for the

Besag model as described in Chapter 4. To implement the Kronecker product
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I used the group option in R-INLA [Section 3.5.5; Gómez-Rubio (2020)] setting

the random effect to be f(area_idx, model = "besag", group = cat_idx,

control.group = list(model = "iid"), ...). Though the Kronecker

product is symmetric, performance is better in R-INLA when the more

complicated effect is written as the first variable rather than the grouping

variable.

In preliminary testing I used the BYM2 model (Simpson et al. 2017) in place of

the Besag. I found that the proportion parameter posteriors tended to be highly

peaked at the value one. For simplicity and to avoid numerical issues, by using

Besag random effects I effectively decided to fix this proportion to one.

Temporal random effects For the time-category random effects γtk I considered

two specifications:

1. IID γtk ∼ N (0, τ−1
γ ),

2. First order autoregressive (AR1) grouped by category

γ = (γ11, . . . , γ13+ , . . . , γT1, . . . , γT3+)⊤ ∼ N (0, (τγR⋆
γ)−).

The scaled structure matrix R⋆
γ = R⋆

r ⊗ I is given by the Kronecker product

of a scaled AR1 structure matrix R⋆
r and the identity matrix I. The AR1

structure matrix Rr is obtained by the precision matrix of the random effects

r = (r1, . . . , rT )⊤ specified by

r1 ∼
(

0, 1
1 − ρ2

)
, (5.12)

rt = ρrt−1 + ϵt, t = 2, . . . , T, (5.13)

where ϵt ∼ N (0, 1) and |ρ| < 1. As with the structured spatial random effects,

I implemented this Kronecker product using the group option via f(year_idx,

model = "ar1", group = cat_idx, control.group = list(model = "iid"),

...). Again, the variable with the more complicated model was written first.
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Note on spatio-temporal interaction random effects I also considered

including separable space-time-category random effects δitk in the model, using

the specification

δ = (δ111, . . . , δnT3+)⊤ ∼ N (0, (τδR⋆
δ)−), (5.14)

where R⋆
δ is a Kronecker product of the relevant space, time and category structure

matrices. These specifications were:

1. IID spatial and IID temporal (Type I) R⋆
δ = I ⊗ I ⊗ I,

2. Besag spatial and IID temporal (Type II) R⋆
δ = R⋆

b ⊗ I ⊗ I,

3. IID spatial and AR1 temporal (Type III) R⋆
δ = I ⊗ R⋆

a ⊗ I,

4. Besag spatial and AR1 (Type IV) R⋆
δ = R⋆

b ⊗ R⋆
a ⊗ I,

where the first, second and third elements of the Kronecker product represent

space, time and category (always IID) structure matrices respectively. The in-

teraction type in brackets (e.g. Type I) is given according to the Knorr-Held

(2000) framework.

Though three-way Kronecker products are not directly supported in R-INLA, I

implemented each specification using a combination of the group and replicate

options [Section 6.5.2; Gómez-Rubio (2020)]. For example, for the Type IV effects the

random effects were specified by f(area_idx_copy, model = "besag", group =

year_idx, replicate = cat_idx, control.group = list(model = "ar1")). I

was able to run these models for single countries, keeping only years at which surveys

occurred in those countries. However, when fitting all countries jointly I found

inclusion of the space-time-category random effects to be intractable, and as such

decided not to include them in the model.

Prior distributions All random effect precision parameters

τ ∈ {τβ, τζ , τα, τu, τγ, τδ} (5.15)
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were given independent penalised complexity (PC) prior distributions (Simpson

et al. 2017) with base model σ = 0 given by

p(τ) = 0.5ντ−3/2 exp
(
−ντ−1/2

)
, (5.16)

where ν = − ln(0.01)/2.5 such that P(σ > 2.5) = 0.01. For the lag-one correlation

parameter ρ, I used the PC prior distribution, as derived by Sigrunn Holbek Sørbye

and Håvard Rue (2017), with base model ρ = 1 and condition P(ρ > 0 = 0.75). I

chose the base model ρ = 1 corresponding to no change in behaviour over time,

rather than the alternative ρ = 0 corresponding to no correlation in behaviour over

time, as I judged the former to be more plausible a priori.

5.3.1.4 Identifiability constraints

To facilitate interpretability of the posterior inferences, I applied sum-to-zero

constraints (Table 5.3) such that none of the category interaction random effects

altered overall category probabilities. In testing of the space-time-category random

effects, I applied analogous sum-to-zero constraints to maintain roles of the space-

category and time-category random effects. In some cases it was not possible to

implement all three sets of constraints for the three-way interactions in R-INLA.

Table 5.3: Applying sum-to-zero constraints to interaction effects ensured that the
main effect was not interfered with.

Random effects Constraints
Category ∑

k βk = 0
Country ∑

c ζck = 0, ∀ k
Age-country ∑

a αack = 0, ∀ c, k
Spatial ∑

i uik = 0, ∀ k
Temporal ∑

t γtk = 0, ∀ k
Spatio-temporal ∑

i δitk = 0, ∀ t, k;∑t δitk =
0, ∀ i, k;∑k δitk = 0, ∀ i, t

5.3.1.5 Survey weighted likelihood

I accounted for the survey design using a weighted pseudo-likelihood where

the observed counts y are replaced by effective counts y⋆, as described in Section
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3.5. These counts may not be integers, and as such the Poisson likelihood given

in Equation (5.3) is not appropriate. Instead, I used a generalised Poisson pseudo-

likelihood y⋆ ∼ xPoisson(κ) given by

p(y⋆) = κy
⋆

⌊y⋆!⌋ exp (−κ) , (5.17)

to extend the Poisson distribution to non-integer weighted counts. This working

likelihood is implemented by family = "xPoisson" in R-INLA.

5.3.1.6 Model selection

I selected the model including Besag spatial random effects and IID temporal

random effects based on the conditional predictive ordinate (CPO) criterion (Pettit

1990). For comparison, I also computed the deviance information criterion (DIC)

(D. J. Spiegelhalter et al. 2002) and widely applicable information criterion (WAIC)

(Watanabe 2013). Each of these criterion can be calculated in R-INLA without

requiring model refitting. The results are presented in Table 5.4 and Figure 5.4.

Table 5.4: Conditional predictive ordinate (CPO), deviance information criterion (DIC),
and widely applicable information criterion (WAIC) values for the multinomial logistic
regression model specifications with corresponding standard errors.

M1 M2 M3 M4
CPO 5573 (36) 5772 (36) 5574 (36) 5771 (36)
DIC 100780 (300) 101588 (317) 100781 (300) 101589 (317)
WAIC 103763 (358) 105008 (383) 103763 (358) 105009 (383)

5.3.2 Spatial logistic regression

To estimate the proportion of those in the k = 3+ risk group that were in the k = 3

and k = 4 risk groups respectively, I fit logistic regression models of the form

yia4 ∼ Binomial (yia3 + yia4, qia) , (5.18)

qia = logit−1 (ηia) , (5.19)

where

qia = pia4

pia3 + pia4
= pia4

pia3+
. (5.20)
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Figure 5.4: For the multinomial logistic regression model, under the conditional predictive
ordinate (CPO) criterion, including Besag spatial random effects rather than IID spatial
random effects improved model performance. On the other hand, under the deviance
information criterion (DIC) and widely applicable information criterion (WAIC), where
smaller values are preferred, the opposite was true. The relatively poor DIC and WAIC
performance of Besag random effects was due to outlying values of these criteria for three
of four surveys in Tanzania, and as such may be erroneous. Though IID temporal random
effects are preferred by all criteria, AR1 temporal random effects performed very similarly,
likely as there is a limited amount of temporal variation in the data to describe.

This two-step approach allowed all surveys to be included in the multinomial

regression model, but only those surveys with a specific transactional sex question

to be included in the logistic regression model. As all such surveys occurred

in the years 2013-2018 (Figure 5.2) I assumed no dependence on time, hence

omission of the index t. Model specification for the linear predictor ηia is discussed

in Section 5.3.2.1 to follow.

5.3.2.1 Model specifications

Table 5.5: Six logistic regression models were considered. The covariate cfswever
denotes the proportion of men who have ever paid for sex and cfswrecent denotes the
proportion of men who have paid for sex in the past 12 months.

Intercept β0 Country ζc Age αac Spatial ui Covariates
L1 Constant IID IID IID None
L2 Constant IID IID Besag None
L3 Constant IID IID IID cfswever
L4 Constant IID IID Besag cfswever
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Intercept β0 Country ζc Age αac Spatial ui Covariates
L5 Constant IID IID IID cfswrecent
L6 Constant IID IID Besag cfswrecent

I considered six logistic regression models (Table 5.5). Each included a constant

intercept β0 ∼ N (−2, 12), country random effects ζc ∼ N (0, τ−1
ζ ), and age-country

random effects αac ∼ N (0, τ−1
α ). The Gaussian prior distribution on β0 placed 95%

prior probability on the range 2-50% for the percentage of those with non-regular

or multiple partners who report transactional sex. I considered two specifications

(IID, Besag) for the spatial random effects ui. To aid estimation with sparse data, I

also considered national-level covariates for the proportion of men who have paid

for sex ever cfswever or in the last twelve months cfswrecent (Hodgins et al.

2022). For both random effect precision parameters τ ∈ {τα, τζ} I used the PC prior

distribution with base model σ = 0 and P(σ > 2.5 = 0.01). For both regression

parameters β ∈ {βcfswever, βcfswrecent} I used the prior distribution β ∼ N (0, 2.52).

5.3.2.2 Survey weighted likelihood

As with the multinomial regression model, I used survey weighted counts

y⋆ and sample sizes m⋆. I used a generalised binomial pseudo-likelihood y⋆ ∼

xBinomial(m⋆, q) given by

p(y⋆ |m⋆, q) =
(

⌊m⋆⌋
⌊y⋆⌋

)
qy

⋆(1 − q)m⋆−y⋆ (5.21)

to extend the binomial distribution to non-integer weighted counts and sample sizes.

This working likelihood is implemented by family = "xBinomial" in R-INLA.

5.3.2.3 Model selection

I selected the model including Besag spatial effects and cfswrecent covariates

according to the CPO criterion. All results, including DIC and WAIC, are presented

in Table 5.6 and Figure 5.5. Inclusion of Besag spatial random effects, rather

than IID, consistently improved performance. Benefits from inclusion of covariates

were more marginal. As some countries had no suitable surveys, I nonetheless
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Figure 5.5: For the logistic regression model, the CPO, DIC, and WAIC each agreed
that the model containing Besag spatial random effects and the cfswrecent covariates
was best. Inclusion of Besag spatial random effects consistently improved each criterion,
whereas improvements from inclusion of any covariates were marginal.

preferred to include covariate information so that estimates in these countries would

be based on some country-specific data.

Table 5.6: CPO, DIC, and WAIC values for the logistic regression model specifications
with corresponding standard errors.

L1 L2 L3 L4 L5 L6
CPO 950 (15) 969 (15) 951 (15) 970 (15) 950 (15) 970 (15)
DIC 4662 (110) 4605 (111) 4662 (110) 4605 (111) 4662 (110) 4605 (111)
WAIC 4692 (115) 4624 (115) 4692 (115) 4624 (115) 4692 (115) 4624 (115)

5.3.3 Female sex worker population size adjustment

Domain experts do not consider having had sex “in return for gifts, cash or anything

else in the past 12 months” sufficient to constitute sex work. For this reason, I

adjusted the estimates obtained based on the transactional sex survey question to

match alternatively obtained age-country FSW population size estimates. Taking

this approach retained subnational variation informed by the transactional sex

survey question.

I used the estimates of adult (15-49) FSW population size by country from

a Bayesian meta-analysis of key population specific data sources (Stevens et al.
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2023). To disaggregate these estimates by age, I took the following steps. First,

I calculated the total sexually debuted population in each age group, by country.

To describe the distribution of age at first sex, I used skew logistic distributions

(Nguyen and Jeffrey W. Eaton 2022) with cumulative distribution function given by

F (x) = (1 + exp(κc(µc − x)))−γc , (5.22)

where κc, µc, γc > 0 are country-specific shape, shape and skewness parameters

respectively. Next, I used the assumed Gamma(α = 10.4, β = 0.36) FSW age

distribution in South Africa from the Thembisa model (L. Johnson and Dorrington

2020) to calculate the implied ratio between the number of FSW and the sexually

debuted population in each age group. I assumed the South African ratios were

applicable to every country, allowing calculation of the number of FSW by age

group in all 13 countries. The resulting age trends obtained (Figure 5.6) reflect

country-level variation in demographics and age-at-first-sex.

Altering the FSW population size estimates requires that other risk group

population size estimates are also altered such that the corresponding risk group

proportion estimates sum to one. Here, estimates of the non-regular or multiple

sexual partner(s) population size were altered to facilitate changing of the FSW

population size.

5.4 Prevalence and incidence by risk group

Using the most recent risk group proportion estimates, I calculated the following

indicators, stratified by district, age group and risk group:

1. HIV prevalence ρiak,

2. the number of people living with HIV (PLHIV) Hiak,

3. HIV incidence λiak, and

4. the number of new HIV infections Iiak.

To do so, I disaggregated district, age group specific Naomi estimates by risk

group.
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Figure 5.6: The disaggregation procedure I used produces an age distribution for FSW
peaking in the 20-24 and 25-29 age groups, and declining for older age groups.

5.4.1 Disaggregation of Naomi prevalence estimates

To disaggregate HIV prevalence, I began by estimating HIV prevalence log odds

ratios log(ORk) relative to the general population. To do so, I began by calculating

age, country, and risk group specific (as well as general population) HIV prevalence

ρcak using bio-marker survey data from all 46 surveys included in the risk group model

(Section 5.2.1). I then fit a logistic regression model, with indicator functions for each

risk group, and an indicator for being in the general population. The fitted regression

coefficients in this model βk correspond to log odds log ρk− log(1−ρk). The required

log odds ratios may then be easily obtained by taking the difference in odds ratios.

To allow the log odds ratio for the highest risk group to vary based on general

population prevalence I fit a linear regression of the FSW log odds against the

general population log odds. I ensured that log odds ratios for the FSW risk group

were at least as large as those for the multiple or non-regular partner(s) risk group.

Given the fitted log odds ratios, I disaggregated Naomi estimates of PLHIV

Hia on the logit scale using numerical optimisation. To do so, I found the values
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of θia which minimised the equation

f(θia) =
4∑

k=1
(logistic(θia + log(ORk)) ·Niak) −Hia, (5.23)

where logistic(x) = exp(x)/(1 + exp(x)) such that logistic(θ̂ia + log(ORk)) = ρiak.

These values were given by

θ̂ia = arg min
θia∈[−10,10]

f(θia)2. (5.24)

The number of PLHIV were obtained by Hiak = ρiakNiak, where Niak is the risk

group population size.

5.4.2 Disaggregation of Naomi incidence estimates

I used linear disaggregation to calculate the number of new HIV infections by risk

group

Iia =
∑
k

Iiak =
∑
k

λiak(1 − ρiak)Niak (5.25)

= 0 + λia2(1 − ρia2)Nia2 + λia3(1 − ρia3)ia3 + λia4(1 − ρia4)Nia4 (5.26)

= λia2 ((1 − ρia2)Nia2 + RR3(1 − ρia3)Nia3 + RR4(λia)(1 − ρi4)Nia4) , (5.27)

where RR2, RR3 and RR4(·) are the HIV risk ratios given in Table 5.1, and

(1 − ρiak)Niak are the susceptible population sizes in each risk group. The risk

ratio for FSW was defined as a function of district-level incidence in the general

population λia. Risk group specific HIV incidence estimates were then given by

λia1 = 0, (5.28)

λia2 = Iia
(1 − ρia2)Nia2 + RR3(1 − ρia3)Nia3 + RR4(λia)(1 − ρia4)Nia4

, (5.29)

λia3 = RR3λia2, (5.30)

λia4 = RR4(λia)λia2. (5.31)

These equations were evaluated using Naomi model estimates of the number of new

HIV infections Iia = λiaNia. The number of new HIV infections were Iiak = λiakNiak.
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5.4.3 Expected new infections reached

To quantify the number of new infections that could be reached prioritising according

to each possible stratification of the population, I took the following approach,

which I illustrate for stratification by age. First, I aggregated the number of new

HIV infections and HIV incidence (calculated above in Section 5.4.2) such that

Ia =
∑
ik

Iiak, (5.32)

λa = Ia/
∑
ik

(1 − ρiak)Niak. (5.33)

I then considered prioritisation individuals by age group a according to the highest

HIV incidence λa. By cumulatively summing the expected infections, for each

fraction of the total population reached (0-100%) I calculated the fraction of total

expected new infections that would be reached. In this instance, as there are

three age groups, the resulting function was piecewise linear with three segments.

This analysis was repeated for all 23 = 8 possible combinations of stratification

by location, age, and risk group.

5.5 Results

5.5.1 Model for risk group proportions

5.5.1.1 Estimates

Figure B.1 and Figure 5.8 show posterior mean estimates for the proportion

in each risk group for the final model in 2018, the most recent year included in

our analysis. I focused on the most recent estimates because they are the most

relevant to inform ongoing HIV policy. In subsequent results, all estimates refer

to 2018, unless otherwise indicated.

The median national FSW proportion was 1.1% (95% CI 0.4–1.9) for the 15-19

age group, 1.6% (95% CI 0.6–2.8) for the 20-24 age group and 1.9% (95% CI 0.5–3.5)

for the 25-29 age group, in line with the results displayed in Figure 5.6.

In the 20-24 and 25-29 year age groups, the majority of women were either

cohabiting or had non-regular or multiple partner(s). Countries in eastern and
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Figure 5.7: The posterior mean of the AGYW risk group proportions over space in
2018. Estimates are stratified by risk group (columns) and five-year age group (rows).
Countries in grey were not included in the analysis. A limitation of this figure is that
using a common colour scale, though desirable for other reasons, makes it challenging to
see spatial variation in the FSW risk group.
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Figure 5.8: National (in white) and subnational (in color) posterior means of the risk
group proportions. Estimates are stratified by risk group (columns) and five-year age
group (rows). Though the information presented is similar to that of Figure 5.7, this figure
presents a clear view of within- and between-country variation in risk group proportions.
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central Africa (Cameroon, Kenya, Malawi, Mozambique, Tanzania, Uganda, Zambia

and Zimbabwe) had a higher proportion of women in these age groups cohabiting

(63.1% [95% CI 35–78.7%] compared with 21.3% [95% CI 10.1–48.8%] with non-

regular partner[s]). In contrast, countries in southern Africa (Botswana, Eswatini,

Lesotho, Namibia and South Africa) had a higher proportion with non-regular

or multiple partner(s) (58.9% [95% CI 43.2–70.5%], compared with 23.4% [95%

CI 9.7–39.1%] cohabiting). This finding is the most notable feature of between-

country variation shown in Figure 5.8. Figure 5.7 shows the geographic delineation

to pass along the border of Mozambique, through the interior of Zimbabwe and

along the border of Zambia. The bimodality of the 20-24 and 25-29 year age

groups is shown in Figure B.2.

In the median district, 57.9% of adolescent girls 15-19 were not sexually

active (95% credible interval [CI] at the district-level 27.7–79.7). The country

of Mozambique was an exception, where the majority of adolescent girls 15-19

(64.23%) were sexually active in the past year and close to a third (34.17%)

were cohabiting with a partner.

5.5.1.2 Coverage assessment

To assess the calibration of the fitted model, I calculated the quantile q of each

observation within the posterior predictive distribution. For calibrated models,

these quantiles, known as probability integral transform (PIT) values (Dawid 1984;

Nikos I. Bosse et al. 2022), should follow a uniform distribution q ∼ U [0, 1]. To

generate samples from the posterior predictive distribution, I applied the multinomial

likelihood to samples from the latent field, setting the sample size to be the floor

of the Kish effective sample size. Using the PIT values, it is possible to calculate

the empirical coverage of all (1 − α)100% equal-tailed posterior predictive credible

intervals. These empirical coverages can be compared to the nominal coverage

(1 −α) for each value of α ∈ [0, 1] to give empirical cumulative distribution function

(ECDF) difference values. This approach has the advantage of considering all possible

confidence values at once. To test for uniformity, I used the binomial distribution
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Figure 5.9: Probability integral transform (PIT) histograms (top row) and empirical
cumulative distribution function (ECDF) difference plots (bottom row) for the final
selected model.

based simultaneous confidence bands for ECDF difference values developed by

Säilynoja et al. (2022). I found the only significant deviation from uniformity

occurred in the right-hand tail of the one cohabiting partner risk group. That is to

say, the proportion of the PIT values which were greater than 0.95 was significantly

more than would be expected under a calibrated model.

5.5.1.3 Variance decomposition

Age group was the most important factor explaining variation in risk group

proportions, accounting for 65.9% (95% CI 54.1–74.9%) of total variation. The

primary change in risk group proportions by age group occurs between the 15-19

age group and 20-29 age group (Figure 5.7). The next most important factor

was location. Country-level differences explained 20.9% (95% CI 11.9–34.5%) of

variation, while district-level variation within countries explained 11.3% (95% CI

8.2–15.3%). Temporal changes only explained 0.9% (95% CI 0.6–1.4%) of variation,

indicating very little change in risk group proportions over time. I found similar

94



A model for risk group proportions

Figure 5.10: Percentage of new infections reached across all 13 countries, taking a variety
of risk stratification approaches, against the percentage of at risk population required to
be reached.

variance decomposition results fitting each country individually (Figure B.1) and

using other model specifications.

5.5.2 Prevalence and incidence by risk group

For any given fraction of AGYW prioritised, substantially more new infections

were reached by strategies that included behavioural risk stratification. Reaching

half of all expected new infections required reaching 19.4% of the population

when stratifying by subnational area and age, but only 10.6% when behavioural

stratification was included (Figure 5.10). The majority of this benefit came from

reaching FSW, who were 1.3% of the population but 10.6% of all new infections.

Considering each country separately, on average, reaching half of new infections

in each country required reaching 14.6% (range 8.7-21.8%) of the population when

stratifying by area and age, reducing to 5.1% (range 2.1-13.2%) when behaviour

was included. The relative importance of stratifying by age, location and behaviour

varied between countries, analogous to the varying contribution of each to the

total variance (Section 5.5.1.3).
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5.6 Discussion

In this chapter, I estimated the proportion of AGYW who fall into different risk

groups at a district level in 13 sub-Saharan African countries. These estimates

support consideration of differentiated prevention programming according to ge-

ographic locations and risk behaviour, as outlined in the Global AIDS Strategy.

Systematic differences in risk by age groups, and variation within and between

countries, explained the large majority of variation in risk group proportions.

Changes over time were negligible in the overall variation in risk group proportions.

The proportion of 15-19 year olds who are sexually active, and among women

aged 20-29 years, norms around cohabitation especially varied across districts and

countries. This variation underscores the need for these granular data to implement

HIV prevention options aligned to local norms and risk behaviours.

I considered four risk groups based on sexual behaviour, the most proximal

determinant of risk. Other factors, such as condom usage or type of sexual act, may

account for additional heterogeneity in risk from sexual behaviour. However,

I did not include these factors in view of measurement difficulties, concerns

about consistency across contexts, and the operational benefits of describing

risk parsimoniously.

Sexual behaviour confers risk only when AGYW reside in geographic locations

where there is unsuppressed viral load among their potential partners. I did not

include more distal determinants, such as school attendance, orphanhood, or gender

empowerment, as I expect their effects on risk to largely be mediated by more

proximal determinants. However, to effectively implement programming, it is crucial

to understand these factors, as well as the broader structural barriers and limits

to personal agency faced by AGYW. Importantly, programs must ensure that

intervention prioritisation occurs without stigmatising or blaming AGYW.

By considering a range of possible risk stratification strategies, I showed that

successful implementation of a risk-stratified approach would allow substantially

more of those at risk for infections to be identified before infection occurs. A
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considerable proportion of estimated new infections were among FSW, supporting

the case for HIV programming efforts focused on key population groups (Baral

et al. 2012). There is substantial variation in the importance of prioritisation by

age, location and behaviour within each country. This highlights the importance of

understanding and tailoring HIV prevention efforts to country-specific contexts. By

standardising the analysis across all 13 countries, I showed the additional efficiency

benefits of resource allocation between countries.

I found a geographic delineation in the proportion of women cohabiting between

southern and eastern Africa, calling attention to a divide attributable to many

cultural, social, and economic factors. The delineation does not represent a boundary

between predominately Christian and Muslim populations, which is further north.

I also note that the high numbers of adolescent girls aged 15-19 cohabiting in

Mozambique is markedly different from the other countries (UNICEF 2019).

Brugh et al. (2021) previously geographically mapped AGYW HIV risk groups

using biomarker and behavioural data from the most recent surveys in Eswatini,

Haiti and Mozambique to define and subsequently map risk groups with a range of

machine learning techniques. My work builds on Brugh et al. (2021) by including

more countries, integrating a greater number of surveys, and connecting risk group

proportions with HIV epidemic indicators to help inform programming.

My modelled estimates of risk group proportions improve upon direct survey

results for three reasons. First, by taking a modular modelling approach, I integrated

all relevant survey information from multiple years, allowing estimation of the FSW

proportion for surveys without a specific transactional sex question. Second, whereas

direct estimates exhibit large sampling variability at a district level, I alleviated this

issue using spatio-temporal smoothing (Figure 5.11). Third, I provided estimates

in all district-years, including those not directly sampled by surveys, allowing

estimates to be consistently fed into further analysis and planning pipelines such

as my analysis of risk group specific prevalence and incidence.

The final surveys included in the risk model model were conducted in 2018.

The analysis may be updated with more surveys as they become available. I do
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Figure 5.11: The modelled estimates display more plausible spatial smoothness than
the direct estimates. In addition, missing values in the direct estimates are appropriately
infilled by the model.

not anticipate that the risk group proportions will change substantially, as I found

that they did not change significantly over time.

My analysis focused on females aged 15-29 years, and could be extended to

consider optimisation of prevention more broadly, accounting for new infections

among adults 15-49 which occur in women 30-49 and men 15-49. Estimating sexual

risk behaviour in adults 15-49 would be a crucial step toward greater understanding

of the dynamics of the HIV epidemic in sub-Saharan Africa, and would allow

incidence models to include stratification of individuals by sexual risk.

5.6.1 Limitations

This analysis was subject to challenges shared by most approaches to monitoring

sexual behaviour in the general population (Cleland et al. 2004). In particular,

under-reporting of higher risk sexual behaviours among AGYW could affect the

validity of my risk group proportion estimates. Due to social stigma or disapproval,

respondents may be reluctant to report non-marital partners (Nnko et al. 2004;

Helleringer et al. 2011) or may bias their reporting of sexual debut (Zaba et al.
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2004; Wringe et al. 2009; Nguyen and Jeffrey W. Eaton 2022). For guidance of

resource allocation, differing rates of under-reporting by country, district, year or

age group are particularly concerning to the applicability of my results; and, while

it may be reasonable to assume a constant rate over space-time, the same cannot

be said for age, where aspects of under-reporting have been shown to decline as

respondents age (Glynn et al. 2011), suggesting that the elevated risks I found faced

by younger women are likely a conservative estimate. If present, these reporting

biases will also have distorted the estimates of infection risk ratios and prevalence

ratios I used in my analysis, likely over-attributing risk to higher risk groups.

I have the least confidence in my estimates for the FSW risk group. As well as

having the smallest sample sizes, my transactional sex estimates do not overcome

the difficulties of sampling hard to reach groups. I inherent any limitations of

the national FSW estimates (Stevens et al. 2023) which I adjust my estimates of

transactional sex to match. Furthermore, I do not consider seasonal migration

patterns, which may particularly affect FSW population size. More generally, I did

not consider covariates potentially predictive of risk group proportions (such as

sociodemographic characteristics, education, local economic activity, cultural and

religious norms and attitudes), which are typically difficult to measure spatially.

Identifying measurable correlates of risk, or particular settings in which time-

concentrated HIV risk occurs, is an important area for further research to improve

risk prioritisation and precision HIV programme delivery.

The efficiency of each stratified prevention strategy depends on the ability of

programmes to identify and effectively reach those in each strata. My analysis of

new infections potentially averted assumed a “best-case” scenario where AGYW

of every strata can be reached perfectly, and should therefore be interpreted as

illustrating the potentially obtainable benefits rather than benefits which would be

obtained from any specific intervention strategy. In practice, stratified prevention

strategies are likely to be substantially less efficient than this best-case scenario.

Factors I did not consider include the greater administrative burden of more complex

strategies, variation in difficulty or feasibility of reaching individuals in each strata,
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variation in the range or effectiveness of interventions by strata, and changes in

strata membership that may occur during the course of a year. Identifying and

reaching behavioural strata may be particularly challenging. Empirical evalua-

tions of behavioural risk screening tools have found only moderate discriminatory

ability (Jia et al. 2022), and risk behaviour may change rapidly among young

populations, increasing the challenge to effectively deliver appropriately timed

prevention packages. This consideration may motivate selecting risk groups based

on easily observable attributes, such as attendance of a particular service or facility,

rather than sexual behaviour.

In conducting this work, there was insufficient engagement with country experts

or civil society organisations. As a result, in early use of the risk group tool the

FSW population size estimates were met with some disagreement in Malawi. In

that instance, the cause of the disagreement was external model inputs used. In

future, estimates should be generated and reviewed by country teams.

5.6.2 Conclusion

I estimated HIV risk group proportions, HIV prevalences and HIV incidences for

AGYW aged 15-19, 20-24 and 25-29 years at a district-level in 13 priority countries.

Using these estimates, I analysed the number of infections that could be reached

by prioritisation based upon location, age and behaviour. Though subject to

limitations, these estimates provide data that national HIV programmes can use to

set targets and implement differentiated HIV prevention strategies as outlined in

the Global AIDS Strategy. Successfully implementing this approach would result

in more efficiently reaching a greater number of those at risk of infection.

Among AGYW, there was systematic variation in sexual behaviour by age and

location, but not over time. Age group variation was primarily attributable to age

of sexual debut (ages 15-24). Spatial variation was particularly present between

those who reported one cohabiting partner versus non-regular or multiple partners.

Risk group proportions did not change substantially over time, indicating that

norms relating to sexual behaviour are relatively static. These findings underscore
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the importance of providing effective HIV prevention options tailored to the needs

of particular age groups, as well as local norms around sexual partnerships.
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This chapter describes the development of a novel deterministic Bayesian inference

approach, motivated by the Naomi small-area estimation model (Jeffrey W Eaton

et al. 2021). Over 35 countries (UNAIDS 2023b) have used the Naomi model web

interface (https://naomi.unaids.org) to produce subnational estimates of HIV

indicators. In Naomi, evidence is synthesised from household surveys and routinely

collected health data to generate estimates of HIV indicators by district, age, and

sex. The complexity and size of the model makes obtaining fast and accurate

Bayesian inferences challenging. As such, development of the approach required

meeting both methodological challenges and implementation difficulties.

The methods in this chapter combine Laplace approximations with adaptive

quadrature, and are descended from the integrated nested Laplace approximation

(INLA) method pioneered by Håvard Rue, Martino, and Chopin (2009). The

INLA method has enabled fast and accurate Bayesian inferences for a vast array

of models, across a large number of scientific fields (Håvard Rue, Riebler, et al.

2017). The success of INLA is in large part due to its accessible implementation

in the R-INLA software. Use of the INLA method and the R-INLA software are

nearly ubiquitous in applied settings. However, the Naomi model is not compatible

with R-INLA. The foremost reason is that Naomi is too complex to be expressed
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using a formula interface of the form y ~ .... Additionally, Naomi has more

hyperparameters (moderate-dimensional, >20) than can typically be handled

using INLA (low-dimensional, certainly below 10). As a result, inferences for the

Naomi model have previously been obtained using an empirical Bayes [EB; Casella

(1985)] approximation to full Bayesian inference, with the Laplace approximation

implemented by the more flexible Template Model Builder [TMB; Kristensen et al.

(2016)] R package. Under the EB approximation, the hyperparameters are fixed by

optimising an approximation to the marginal posterior. This is undesirable as fixing

the hyperparameters underestimates their uncertainty. Ultimately, the resulting

overconfidence may lead to worse HIV prevention policy decisions.

Most methodological work relating to INLA has taken place using the R-INLA

software package. There are two notable exceptions. First, the simplified INLA

approach of Wood (2020), implemented in the mgcv R package, proposed a fast

Laplace approximation approach which does not rely on Markov structure of the

latent field in the same way as Håvard Rue, Martino, and Chopin (2009). Second,

Stringer et al. (2022) extended the scope and scalability of INLA by avoiding

augmenting the latent field with the noisy structured additive predictors. This

enables the application of INLA to a wider class of extended latent Gaussian

models, which includes Naomi. Van Niekerk et al. (2023) refer to this as the

“modern” formulation of the INLA method, as opposed to the “classic” formulation

of Håvard Rue, Martino, and Chopin (2009), and it is now included in R-INLA

using inla.mode = "experimental". Stringer et al. (2022) also propose use of the

adaptive Gauss-Hermite quadrature [AGHQ; Naylor and A. F. Smith (1982)] rule

to perform integration with respect to the hyperparameters. The methodological

contributions of this chapter extend Stringer et al. (2022) in two directions:

1. First, a universally applicable implementation of INLA with Laplace marginals,

where automatic differentiation via TMB is used to obtain the derivatives

required for the Laplace approximation. For users of R-INLA, the Stringer et al.

(2022) approach is analogous to method = "gaussian", while the approach
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newly implemented in this chapter is analogous to method = "laplace". Sec-

tion 6.2 demonstrates the implementation using two examples, one compatible

with R-INLA and one incompatible.

2. Second, a quadrature rule which combines AGHQ with principal components

analysis to enable integration over moderate-dimensional spaces, described

in Section 6.4. This quadrature rule is used to perform inference for the

Naomi model by integrating the marginal Laplace approximation with respect

to the moderate-dimensional hyperparameters within an INLA algorithm

implemented in TMB in Section 6.5.

This work was conducted in collaboration with Prof. Alex Stringer, whom I vis-

ited at the University of Waterloo during the fall term of 2022. Code for the analysis

in this chapter is available from https://github.com/athowes/naomi-aghq.

6.1 Inference methods and software

This section reviews existing deterministic Bayesian inference methods (Sections

6.1.1, 6.1.2, 6.1.3) and the software implementing them (Section 6.1.4). Recall that

inference comprises obtaining the posterior distribution

p(ϕ | y) = p(ϕ,y)
p(y) , (6.1)

or some way to compute relevant functions of it. The posterior distribution

encapsulates beliefs about the parameters ϕ = (ϕ1, . . . , ϕd) having observed data

y = (y1, . . . , yn). Here I assume these quantities are expressible as vectors.

Inference is a sensible goal because (under Bayesian decision theory) the posterior

distribution is sufficient for use in decision making. More specifically, given a loss

function l(a,ϕ), the expected posterior loss of a decision a depends on the data

only via the posterior distribution

E(l(a,ϕ) | y) =
∫
Rd
l(a,ϕ)p(ϕ | y)dϕ. (6.2)
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For example, historic data about treatment demand are only required for planning

of HIV treatment service provision in so far as they alter the posterior distribution

of current demand. The information provided for strategic response to the HIV

epidemic may therefore be thought of as functions of some posterior distribution.

It is usually intractable to obtain the posterior distribution. This is because

the denominator in Equation (6.1) contains a potentially high-dimensional integral

over the d ∈ Z+ -dimensional parameters

p(y) =
∫
Rd
p(y,ϕ)dϕ. (6.3)

This quantity is sometimes called the evidence or posterior normalising constant.

As a result, approximations to the posterior distribution p̃(ϕ | y) are typically used

in place of the exact posterior distribution.

Some approximate Bayesian inference methods, like Markov chain Monte Carlo

(MCMC), avoid directly calculating the posterior normalising constant. Instead

they find ways to work with the unnormalised posterior distribution

p(ϕ | y) ∝ p(ϕ,y), (6.4)

where p(y) is not a function of ϕ and so can be removed as a constant. Other

approximate Bayesian inference methods can more directly be thought of as ways

to estimate the posterior normalising constant (Equation (6.3)). The methods

in this chapter fall into this latter category, and are sometimes described as

deterministic Bayesian inference methods because they do not make fundamental

use of randomness.

6.1.1 The Laplace approximation

Laplace’s method (Laplace 1774) is a technique used to approximate integrals of the

form ∫
exp(Ch(z))dz, (6.5)

where C > 0 is a constant, h is a function which is twice-differentiable, and z

are generic variables. The Laplace approximation (Tierney and Kadane 1986) is
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obtained by application of Laplace’s method to calculate the posterior normalising

constant (Equation (6.3)). Let h(ϕ) = log p(ϕ,y) such that

p(y) =
∫
Rd
p(y,ϕ)dϕ =

∫
Rd

exp(h(ϕ))dϕ. (6.6)

Laplace’s method involves approximating the function h by its second order Taylor

expansion. This expansion is then evaluated at a maxima of h to eliminate the

first order term. Let

ϕ̂ = arg max
ϕ

h(ϕ) (6.7)

be the posterior mode, and

Ĥ = − ∂2

∂ϕ∂ϕ⊤h(ϕ)|ϕ=ϕ̂ (6.8)

be the Hessian matrix evaluated at the posterior mode. The Laplace approximation

to the posterior normalising constant (Equation (6.3)) is then

p̃LA(y) =
∫
Rd

exp
(
h(ϕ̂) − 1

2(ϕ − ϕ̂)⊤Ĥ(ϕ − ϕ̂)
)

dϕ (6.9)

= p(ϕ̂,y) · (2π)d/2

|Ĥ|1/2
. (6.10)

The result above is calculated using the known normalising constant of the Gaus-

sian distribution

pG(ϕ | y) = N
(
ϕ | ϕ̂, Ĥ−1

)
= |Ĥ|1/2

(2π)d/2 exp
(

−1
2(ϕ − ϕ̂)⊤Ĥ(ϕ − ϕ̂)

)
. (6.11)

The Laplace approximation may be thought of as approximating the posterior

distribution by a Gaussian distribution p(ϕ | y) ≈ pG(ϕ | y) such that

p̃LA(y) = p(ϕ,y)
pG(ϕ | y)

∣∣∣∣
ϕ=ϕ̂

. (6.12)

Calculation of the Laplace approximation requires obtaining the second derivative

of h with respect to ϕ (Equation (6.8)). Derivatives may also be used to improve

the performance of the optimisation algorithm used to obtain the maxima of h

(Equation (6.7)) by providing access to the gradient of h with respect to ϕ.
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Figure 6.1: Demonstration of the Laplace approximation for the simple Bayesian
inference example of Figure 3.1. The unnormalised posterior is p(ϕ, y) = ϕ8 exp(−4ϕ),
and can be recognised as the unnormalised gamma distribution Gamma(9, 4). The true
log normalising constant is log p(y) = log Γ(9) − 9 log(4) = −1.872046, whereas the
Laplace approximate log normalising constant is log p̃LA(y) = −1.882458, resulting from
the Gaussian approximation pG(ϕ | y) = N (ϕ | µ = 2, τ = 2).

6.1.1.1 The marginal Laplace approximation

Approximating the full joint posterior distribution using a Gaussian distribution

may be inaccurate. An alternative is to approximate the marginal posterior

distribution of some subset of the parameters, referred to as the marginal Laplace

approximation. It remains to integrate out the remaining parameters, using another

more suitable method. This approach is the basis of the INLA method.

Let ϕ = (x,θ) and consider a three-stage hierarchical model

p(y,x,θ) = p(y | x,θ)p(x | θ)p(θ), (6.13)

where x = (x1, . . . , xN) is the latent field, and θ = (θ1, . . . , θm) are the hyper-

parameters. Applying a Gaussian approximation to the latent field, we have

h(x,θ) = log p(y,x,θ) with N -dimensional posterior mode

x̂(θ) = arg max
x

h(x,θ) (6.14)

and (N × N)-dimensional Hessian matrix evaluated at the posterior mode

Ĥ(θ) = − ∂2

∂x∂x⊤h(x,θ)|x=x̂(θ). (6.15)
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Dependence on the hyperparameters θ is made explicit in both Equation (6.14)

and (6.15) such that there is a Gaussian approximation to the marginal posterior

of the latent field p̃G(x | θ,y) = N (x | x̂(θ), Ĥ(θ)−1) at each value θ in the space

Rm. The resulting marginal Laplace approximation, for a particular value of

the hyperparameters, is then

p̃LA(θ,y) =
∫
RN

exp
(
h(x̂(θ),θ) − 1

2(x − x̂(θ))⊤Ĥ(θ)(x − x̂(θ))
)

dx (6.16)

= exp(h(x̂(θ),y)) · (2π)d/2

|Ĥ(θ)|1/2
(6.17)

= p(y,x,θ)
p̃G(x | θ,y)

∣∣∣∣
x=x̂(θ)

. (6.18)

The marginal Laplace approximation is most accurate when the marginal

posterior p(x | θ,y) is accurately approximated by a Gaussian distribution. For

the class of latent Gaussian models (Håvard Rue, Martino, and Chopin 2009) the

prior distribution on the latent field is Gaussian

x ∼ N (x | θ) = N (x | 0,Q(θ)), (6.19)

with assumed zero mean 0, and precision matrix Q(θ). The resulting marginal

posterior distribution

p(x | θ,y) ∝ N (x | θ)p(y | x,θ) (6.20)

∝ exp
(

−1
2x⊤Q(θ)x + log p(y | x,θ)

)
(6.21)

is not exactly Gaussian. However, its deviation can be expected to be small if

log p(y | x,θ) is small (Blangiardo et al. 2013).

6.1.2 Quadrature

Quadrature is a method used to approximate integrals using a weighted sum of

function evaluations. As with the Laplace approximation, it is deterministic in

that the computational procedure is not intrinsically random. Let Q be a set of
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quadrature nodes z ∈ Q and ω : Rd → R be a weighting function. Then, quadrature

can be used to estimate the posterior normalising constant (Equation (6.3)) by

p̃Q(y) =
∑
z∈Q

p(y, z)ω(z). (6.22)

To illustrate quadrature for a simple example, consider integrating the univariate

function f(z) = z sin(z) between z = 0 and z = π. This integral can be

calculated analytically using integration by parts and evaluates to π. A quadrature

approximation of this integral is

π = sin(z) − z cos(z)
∣∣∣∣∣
π

0
=
∫ π

0
z sin(z)dz ≈

∑
z∈Q

z sin(z)ω(z), (6.23)

where Q = {z1, . . . zk} are a set of k quadrature nodes and ω : R → R is a

weighting function.

The trapezoid rule is an example of a quadrature rule, in which quadrature

nodes are spaced throughout the domain with ϵi = zi − zi−1 > 0 for 1 < i <

k. The weighting function is

ω(zi) =
ϵi 1 < i < k,

ϵi/2 i ∈ {1, k}.
(6.24)

Figure 6.2 shows application of the trapezoid rule to integration of z sin(z) as

described in Equation (6.23). The more quadrature nodes are used, the more

accurate the estimate of the integrand is. Under some regularity conditions on f ,

as the spacing between quadrature nodes ϵ → 0 the estimate obtained using the

trapezoid rule converges to the true value of the integral. Indeed, this approach

was used by Riemann to provide the first rigorous definition of the integral.

Quadrature methods are most effective when integrating over small dimensions,

say three or less. This is because the number of quadrature nodes at which the

function is required to be evaluated in the computation grows exponentially with

the dimension. For even moderate dimension, this quickly makes computation

intractable. For example, using 5, 10, or 20 quadrature nodes per dimension, as in

Figure 6.2, in five-dimensions (rather than one, as shown) would require 3125, 100000

or 3200000 quadrature nodes respectively. Though quadrature is easily parallelisable,
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Figure 6.2: The trapezoid rule with k = 5, 10, 20 equally-spaced (ϵi = ϵ > 0) quadrature
nodes can be used to integrate the function f(z) = z sin(z), shown in green, in the domain
[0, π]. Here, the exact solution is π ≈ 3.1416. As k increases and more nodes are used
in the computation, the quadrature estimate becomes closer to the exact solution. The
trapezoid rule estimate is given by the sum of the areas of the grey trapezoids.
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in that function evaluation at each node are entirely independent, solutions requiring

the evaluation of millions quadrature nodes are unlikely to be tractable.

6.1.2.1 Gauss-Hermite quadrature

It is possible to construct quadrature rules which use relatively few nodes and

are highly accurate when the integrand adheres to certain assumptions [Chapter 4;

Press et al. (2007)]. Gauss-Hermite quadrature [GHQ; Davis and Rabinowitz (1975)]

is a quadrature rule designed to integrate functions of the form f(z) = φ(z)Pα(z)

exactly, that is with no error, such that
∫
φ(z)Pα(z)dz =

∑
z∈Q

φ(z)Pα(z)ω(z). (6.25)

In this equation, the term φ(·) is a standard multivariate normal density N (· | 0, I),

where 0 and I are the zero-vector and identify matrix of relevant dimension, and

the term Pα(·) is a polynomial with highest degree monomial α ≤ 2k − 1, where k

is the number of quadrature nodes per dimension. GHQ is attractive for Bayesian

inference problems because posterior distributions are typically well approximated by

functions of this form. Support for this statement is provided by the Bernstein–von

Mises theorem, which states that, under some regularity conditions, as the number

of data points increases the posterior distribution convergences to a Gaussian.

I follow the notation for GHQ established by Bilodeau et al. (2022). First, to

construct the univariate GHQ rule for z ∈ R, let Hk(z) be the kth (probabilist’s)

Hermite polynomial

Hk(z) = (−1)k exp(z2/2) d
dzk exp(−z2/2) (6.26)

The Hermite polynomials are defined to be orthogonal with respect to the standard

Gaussian probability density function
∫
Hk(z)Hl(z)φ(z)dz = δkl, (6.27)

where δkl = 1 if k = l and δkl = 0 otherwise. The GHQ nodes z ∈ Q(1, k) are

given by the k zeroes of the kth Hermite polynomial. For k = 1, 2, 3 these zeros,
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up to three decimal places, are

H1(z) = z = 0 =⇒ Q(1, 1) = {0}, (6.28)

H2(z) = z2 − 1 = 0 =⇒ Q(1, 2) = {−0.707, 0.707}, (6.29)

H3(z) = z3 − 3z = 0 =⇒ Q(1, 3) = {−1.225, 0, 1.225}. (6.30)

The quadrature nodes are symmetric about zero, and include zero when k is

odd. The corresponding weighting function ω : Q(1, k) → R chosen to satisfy

Equation (6.25) is given by

ω(z) = k!
φ(z)[Hk+1(z)]2

. (6.31)

Multivariate GHQ rules are usually constructed using the product rule with

identical univariate GHQ rules in each dimension. As such, in d dimensions, the

multivariate GHQ nodes z ∈ Q(d, k) are defined by

Q(d, k) = Q(1, k)d = Q(1, k) × · · · × Q(1, k). (6.32)

The corresponding weighting function ω : Q(d, k) → R is given by a product of

the univariate weighting functions ω(z) = ∏d
j=1 ω(zj).

6.1.2.2 Adaptive quadrature

In adaptive quadrature, the quadrature nodes and weights selected depend on

the specific integrand being considered. For example, adaptive use of the trapezoid

rule requires specifying a rule for the start point, end point, and spacing between

quadrature nodes. It is particularly important to use an adaptive quadrature rule

for Bayesian inference problems because the posterior normalising constant p(y)

is a function of the data. No fixed quadrature rule can be expected to effectively

integrate all possible posterior distributions.

In adaptive GHQ [AGHQ; Naylor and A. F. Smith (1982)] the quadrature

nodes are shifted by the mode of the integrand, and rotated based on a matrix

decomposition of the inverse curvature at the mode. To demonstrate AGHQ,
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consider its application to calculation of the posterior normalising constant. The

relevant transformation of the GHQ nodes Q(d, k) is

ϕ(z) = P̂z + ϕ̂, (6.33)

where P̂ is a matrix decomposition of Ĥ
−1 = P̂P̂⊤. To account for the transfor-

mation, the weighting function may be redefined to include a matrix determinant,

analogous to the Jacobian determinant, or more simply the matrix determinant may

be written outside the integral. Taking the later approach, the resulting adaptive

quadrature estimate of the posterior normalising constant is

p̃AQ(y) = |P̂|
∑

z∈Q(d,k)
p(y,ϕ(z))ω(z) (6.34)

= |P̂|
∑

z∈Q(d,k)
p(y, P̂z + ϕ̂)ω(z). (6.35)

The quantities ϕ̂ and Ĥ are exactly those given in Equations (6.7) and (6.8) and

used in the Laplace approximation. Indeed, when k = 1 then AGHQ corresponds

to the Laplace approximation. To see this, we have H1(z) with univariate zero

z = 0 such that the adapted node is given by the mode ϕ(z = 0 = 0 × · · · × 0) = ϕ̂.

The weighting function is given by

ω(0)d =
(

1!
φ(0)H2(0)2

)d
=
(

1
φ(0)

)d
= (2π)d/2 . (6.36)

The AGHQ estimate of the normalising constant for k = 1 is then given by

p̃AQ(y) = p(y, ϕ̂) · |P̂| · (2π)d/2 = p(y, ϕ̂) · (2π)d/2

|Ĥ|1/2
, (6.37)

which corresponds to the Laplace approximation p̃LA(y) given in Equation (6.10).

This connection supports AGHQ being a natural extension of the Laplace approx-

imation when greater accuracy than k = 1 is required.

Two alternatives for the matrix decomposition Ĥ
−1 = P̂P̂⊤ are the Cholesky and

spectral decomposition (Jäckel 2005). For the Cholesky decomposition P̂ = L̂, where

L̂ =


L11 0 · · · 0
L̂12 L̂22

. . . ...
... . . . . . . 0
L̂1d . . . L̂(d−1)d L̂dd

 (6.38)

113



Fast approximate Bayesian inference

Figure 6.3: The Gauss-Hermite quadrature nodes z ∈ Q(2, 3) for a two-dimensional
integral with three nodes per dimension (Panel A). Adaption occurs based on the mode
(Panel B) and covariance of the integrand via either the Cholesky (Panel C) or spectral
(Panel D) decomposition of the inverse curvature at the mode. Here, the integrand
is f(z1, z2) = sn(0.5z1, α = 2) · sn(0.8z1 − 0.5z2, α = −2), where sn(·) is the standard
skewnormal probability density function with shape parameter α ∈ R.
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is a lower triangular matrix. For the spectral decomposition P̂ = ÊΛ̂1/2, where

Ê = (ê1, . . . êd) contains the eigenvectors of Ĥ−1 and Λ̂ is a diagonal matrix

containing its eigenvalues (λ̂1, . . . , λ̂d). Figure 6.3 demonstrates GHQ and AGHQ

for a two-dimensional example, using both decomposition approaches. Using the

Cholesky decomposition results in adapted quadrature nodes which collapse along

one of the dimensions, as a result of the matrix L̂ being lower triangular. On the

other hand, using the spectral decomposition results in adapted quadrature nodes

which lie along the orthogonal eigenvectors of Ĥ−1.

Using AGHQ, Bilodeau et al. (2022) provide the first stochastic convergence

rate for adaptive quadrature applied to Bayesian inference.

6.1.3 Integrated nested Laplace approximation

The integrated nested Laplace approximation (INLA) method (Håvard Rue, Martino,

and Chopin 2009) combines marginal Laplace approximations with quadrature to

enable approximation of posterior marginal distributions.

Consider the marginal Laplace approximation (Section 6.1.1.1) for a three-stage

hierarchical model given by

p̃LA(θ,y) = p(y,x,θ)
p̃G(x | θ,y)

∣∣∣∣
x=x̂(θ)

. (6.39)

To complete approximation of the posterior normalising constant, the marginal

Laplace approximation can be integrated over the hyperparameters using a quadra-

ture rule (Section 6.1.2)

p̃(y) =
∑
z∈Q

p̃LA(z,y)ω(z). (6.40)

Though any choice of quadrature rule is possible, following Stringer et al. (2022)

here I consider use of AGHQ. Let z ∈ Q(m, k) be the m-dimensional GHQ

nodes constructed using the product rule with k nodes per dimension, and ω :

Rm → R the corresponding weighting function. These nodes are adapted by
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θ(z) = P̂LAz + θ̂LA where

θ̂LA = arg max
θ

log p̃LA(θ,y), (6.41)

ĤLA = − ∂2

∂θ∂θ⊤ log p̃LA(θ,y)|θ=θ̂LA
, (6.42)

Ĥ
−1
LA = P̂LAP̂⊤

LA. (6.43)

The nested AGHQ estimate of the posterior normalising constant is then

p̃AQ(y) = |P̂LA|
∑

z∈Q(m,k)
p̃LA(θ(z),y)ω(z). (6.44)

This estimate can be used to normalise the marginal Laplace approximation as fol-

lows

p̃LA(θ | y) = p̃LA(θ,y)
p̃AQ(y) . (6.45)

The posterior marginals p̃(θj | y) may be obtained by

p̃(θj | y) =
∫
p̃(θj | y)dθ−j. (6.46)

These integrals may be computed by reusing the AGHQ rule. More recent methods

are discussed in Section 3.2 of Martins et al. (2013).

Multiple methods have been proposed for obtaining the p̃(x | y) or individual

marginals p̃(xi | y) Four methods are presented below, trading-off accuracy with

computational expense.

6.1.3.1 Gaussian marginals

Most easily, inferences for the latent field can be obtained by approximation

of p(x | y) using another application of the quadrature rule (Håvard Rue and

Martino 2007)

p(x | y) =
∫
p(x,θ | y)dθ =

∫
p(x | θ,y)p(θ | y)dθ (6.47)

≈ |P̂LA|
∑

z∈Q(m,k)
p̃G(x | θ(z),y)p̃LA(θ(z) | y)ω(z). (6.48)
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The quadrature rule z ∈ Q(m, k) is used both internally to normalise the marginal

Laplace approximation, and externally to perform integration with respect to the

hyperparameters. Equation (6.48) is a mixture of Gaussian distributions

pG(x | θ(z),y), (6.49)

each with multinomial probabilities

λ(z) = |P̂LA|p̃LA(θ(z) | y)ω(z), (6.50)

where ∑λ(z) = 1 and λ(z) > 0. Samples may therefore be naturally obtained

for the complete vector x jointly by first drawing a node z ∈ Q(m, k) with

multinomial probabilities λ(z) then drawing a sample from the corresponding

Gaussian distribution in Equation (6.49). Algorithms for fast and exact simulation

from a Gaussian distribution have been developed, including by Håvard Rue (2001).

The posterior marginals for any subset of the complete vector can simply be

obtained by keeping the relevant entries of x.

6.1.3.2 Laplace marginals

An alternative higher accuracy, but more computationally expensive, approach

is to calculate a Laplace approximation to the marginal posterior

p̃LA(xi,θ,y) = p(xi,x−i,θ,y)
p̃G(x−i |xi,θ,y)

∣∣∣∣
x−i=x̂−i(xi,θ)

. (6.51)

Here, the variable xi is excluded from the Gaussian approximation such that

pG(x−i |xi,θ,y) = N (x−i | x̂−i(xi,θ), Ĥ−i,−i(xi,θ)), (6.52)

with (N − 1)-dimensional posterior mode

x̂−i(xi,θ) = arg max
x−i

log p(y, xi,x−i,θ), (6.53)

and [(N −1)× (N −1)]-dimensional Hessian matrix evaluated at the posterior mode

Ĥ−i,−i(xi,θ) = − ∂2

∂x−i∂x⊤
−i

log p(y, xi,x−i,θ)|x−i=x̂−i(xi,θ). (6.54)
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The approximate posterior marginal p̃(xi | y) may be obtained by normalising the

marginal Laplace approximation (Equation (6.51)) before performing integration

with respect to the hyperparameters (as in Equation (6.48)). The normalised

Laplace approximation is

p̃LA(xi,θ | y) = p̃LA(xi,θ,y)
p̃(y) . (6.55)

where either the estimate of the evidence in Equation (6.44) may be reused or a de

novo estimate can be computed. Integration with respect to the hyperparameters

is performed via

p(xi | y) =
∫
p(xi,θ | y)dθ (6.56)

≈ |P̂LA|
∑

z∈Q(m,k)
p̃LA(xi,θ(z) | y)ω̃(z). (6.57)

Equation (6.57) is a mixture of the normalised Laplace approximations p̃LA(xi,θ | y)

over the hyperparameter quadrature nodes. However, unlike the Gaussian case

(Section 6.1.3.1) it is not easy to directly sample each Laplace approximation. As

such, Equation (6.57) may instead be represented by its evaluation at a number of

nodes. One approach is to chose these nodes based on a one-dimensional AGHQ

rule, using the mode and standard deviation of the Gaussian approximation to avoid

unnecessary computation of the Laplace marginal mode and standard deviation.

The probability density function of the marginal posterior may then be recovered

using a Lagrange polynomial or spline interpolant to the log probabilities.

An important downside of the Laplace approach is that posterior dependences

between posterior marginal draws are not preserved, unlike in the mixture of

Gaussians case (Equation (6.48)). Recent work using Gaussian copulas (Chiuchiolo

et al. 2023) aims to retain the accuracy of the Laplace marginals strategy while

obtaining a joint approximation.

6.1.3.3 Simplified Laplace marginals

When the latent field x is a Gauss-Markov random fields [GMRF; Havard Rue

and Held (2005)] it is possible to efficiently approximate the Laplace marginals in
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Section 6.1.3.2. The simplified approximation is achieved by a Taylor expansion

on the numerator and denominator of Equation (6.51) up to third order. The

approach is analogous to correcting the Gaussian approximation in Section 6.1.3.1

for location and skewness. Details are left to Section 3.2.3 of Håvard Rue, Martino,

and Chopin (2009).

6.1.3.4 Simplified INLA

Wood (2020) describe a method for approximating the Laplace marginals without

depending on the Markov structure, while still achieving equivalent efficiency. This

work was motivated by a setting in which, similar to extended latent Gaussian

models [ELGMs; Stringer et al. (2022)], precision matrices are not typically as

sparse as GMRFs. Details are left to Wood (2020).

6.1.3.5 Augmenting a noisy structured additive predictor to the latent
field

Discussion of INLA is concluded by briefly mentioning a difference in imple-

mentation between Håvard Rue, Martino, and Chopin (2009) and Stringer et al.

(2022). Specifically, Håvard Rue, Martino, and Chopin (2009) augment the latent

field to include a noisy structured additive predictor as follows

η⋆ = η + ϵ, (6.58)

ϵ ∼ N (0, τ−1In), (6.59)

x⋆ = (η⋆,x). (6.60)

Stringer et al. (2022) (Section 3.2) omit this augmentation, highlighting several

drawbacks including: fitting ELGMs, fitting LGMs to large datasets, and theoretical

study of the approximation error. Similarly, in what Van Niekerk et al. (2023)

(Section 2.1) refer to as the “modern” formula of INLA, the latent field is not

augmented. The crux of the issue regards the dimensions and sparsity structure

of the Hessian matrix Ĥ(θ). Details are left to Stringer et al. (2022). Based on

these findings, this thesis does not augment the latent field.
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6.1.4 Software

6.1.4.1 R-INLA

The R-INLA software (Martins et al. 2013) implements the INLA method, as

well as the stochastic partial differential equation (SPDE) approach of Lindgren

et al. (2011). R-INLA is the R interface to the core inla program, which is written

in C (Martino and Håvard Rue 2009). Algorithms for sampling from GMRFs are

used from the GMRFLib C library (Håvard Rue and Follestad 2001). First and

second derivatives are either hard coded, or computed numerically using central

finite differences (Fattah et al. 2022). For a review recent computational features of

R-INLA, including parallelism via OpenMP (Diaz et al. 2018) and use of the PARDISO

sparse linear equation solver (Bollhöfer et al. 2020), see Gaedke-Merzhäuser et al.

(2023). Further information about R-INLA, including recent developments, can

be found at https://r-inla.org.

The connection between the latent field x and structured additive predictor η is

specified in R-INLA using a formula interface of the form y ~ .... The interface is

similar to that used in the lm function in the core stats R package. For example,

a model with one fixed effect a and one IID random effect b, has the formula y ~

a + f(b, model = "iid"). This interface is easy to engage with for new users,

but can be limiting for more advanced users.

The approach used to compute the marginals p̃(xi | y) can be chosen by setting

method to "gaussian" (Section 6.1.3.1), "laplace" (Section 6.1.3.2) or simplified.laplace

(Section 6.1.3.3). The quadrature grid used can be chosen by setting int.strategy

to "eb" (empirical Bayes, one quadrature node), "grid" (a dense grid), or "ccd"

[Box-Wilson central composite design; Box and K. B. Wilson (1992)]. Figure 6.4

demonstrates the latter two integration strategies. By default, the "grid" strategy

is used for m ≤ 2 and the "ccd" strategy is used for m > 2.

Various software packages have been built using R-INLA. Perhaps the most sub-

stantial is the inlabru R package (Bachl et al. 2019). As well as a simplified syntax,

inlabru provides capabilities for fitting more general non-linear structured additive

predictor expressions via linearisation and repeat use of R-INLA. These complex
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Figure 6.4: Consider the function f(z1, z2) = sn(0.5z1, α = 2) · sn(0.8z1 − 0.5z2, α = −2)
as described in Figure 6.3. Panel A shows the grid method as used in R-INLA and detailed
in Section 3.1 of Håvard Rue, Martino, and Chopin (2009). Briefly, equally-weighted
quadrature points are generated by starting at the mode and taking steps of size δz along
each eigenvector of the inverse curvature at the mode, scaled by the eigenvalues, until the
difference in log-scale function evaluations (compared to the mode) is below a threshold
δπ. Intermediate values are included if they have sufficient log-scale function evaluation.
Here, I set δz = 0.75 and δπ = 2. Panel B shows a CCD as used in R-INLA and detailed in
Section 6.5 of Håvard Rue, Martino, and Chopin (2009). The CCD was generated using
the rsm R package (Lenth 2009), and is comprised of: one centre point; four factorial
points, used to help estimate linear effects; and four star points, used to help estimate
the curvature.

model components are specified in inlabru using the bru_mapper system. See

the inlabru package vignettes for additional details. Further inference procedures

which leverage R-INLA include INLA within MCMC (Gómez-Rubio and Håvard Rue

2018) and importance sampling with INLA (Berild et al. 2022).

6.1.4.2 TMB

Template Model Builder [TMB; Kristensen et al. (2016)] is an R package which

implements the Laplace approximation. In TMB, derivatives are obtained using

automatic differentiation, also known as algorithmic differentiation [AD; Baydin

et al. (2017)]. The approach of AD is to decompose any function into a sequence

of elementary operations with known derivatives. The known derivatives of the
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elementary operations may then be composed by repeat use of the chain rule to

obtain the function’s derivative. A review of AD and how it can be efficiently

implemented is provided by C. C. Margossian (2019). TMB uses the C++ package

CppAD (B. Bell 2023) for AD [Section 3; Kristensen et al. (2016)]. The development of

TMB was strongly inspired by the Automatic Differentiation Model Builder [ADMB;

Fournier et al. (2012); Bolker et al. (2013)] project. An algorithm is used in

TMB to automatically determine matrix sparsity structure [Section 4.2; Kristensen

et al. (2016)]. The R package Matrix and C++ package Eigen are then used

for sparse and dense matrix calculations. Kristensen et al. (2016) highlight the

modular design philosophy of TMB.

Models are specified in TMB using a C++ template file which evaluates log p(y,x,θ)

in a Bayesian context or log p(y | x,θ) in a frequentist setting. Other software

packages have been developed which also use TMB C++ templates. The tmbstan R

package (Monnahan and Kristensen 2018) allows running the Hamiltonian Monte

Carlo (HMC) algorithm via Stan. The aghq R package (Stringer 2021) allows use

of AGHQ, and AGHQ over the marginal Laplace approximation, via the mvQuad

R package (Weiser 2016). The glmmTMB R package (M. E. Brooks et al. 2017)

allows specification of common GLMM models via a formula interface. It is also

possible to extract the TMB objective function used by glmmTMB, which may then

be passed into aghq or tmbstan.

A review of the use of TMB for spatial modelling, including comparison to R-INLA,

is provided by Osgood-Zimmerman and Jon Wakefield (2023).

6.1.4.3 Other software

The mgcv [Mixed GAM computation vehicle; Wood (2017)] R package estimates

generalised additive models (GAMs) specified using a formula interface. This

package is briefly mentioned so as to note that the function mgcv::ginla implements

the simplified INLA approach of Wood (2020) (Section 6.1.3.4).
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6.2 A universal INLA implementation

This section is about implementation of the INLA method using AD via the TMB

package. Both the Gaussian and Laplace latent field marginal approximations

are implemented. The implementation is universal in that it is compatible with

any model with a TMB C++ template, rather than based on a restrictive formula

interface. The TMB probabilistic programming language is described as “universal”

in that it is an extension of the Turing-complete general purpose language C++.

Martino and Riebler (2020) note that “implementing INLA from scratch is a

complex task” and as a result “applications of INLA are limited to the (large class

of) models implemented [in R-INLA]”. A universal INLA implementation facilitates

application of the method to models which are not compatible with R-INLA. The

Naomi model is one among many examples. Section 5 of Osgood-Zimmerman

and Jon Wakefield (2023) notes that “R-INLA is capable of using higher-quality

approximations than TMB” (hyperparameter integration and latent field Laplace

marginals) and “in return TMB is applicable to a wider class of models”. Yet there

is no inherent reason for these capabilities to be in conflict: it is possible to have

both high-quality approximations and flexibility. The potential benefits of a more

flexible INLA implementation based on AD were noted by H. J. Skaug (2009) (a

coauthor of TMB) in discussion of Håvard Rue, Martino, and Chopin (2009), who

noted that such a system would be “fast, flexible, and easy-to-use”, as well as

“automatic from a user’s perspective”. As this suggestion was made close to 15

years ago, it is surprising that its potential remains unrealised.

I demonstrate the universal implementation with two examples:

1. Section 6.2.1 considers a generalised linear mixed model (GLMM) of an

epilepsy drug. The model was used in Section 5.2 of Håvard Rue, Martino,

and Chopin (2009), and is compatible with R-INLA. For some parameters there

is a notable difference in approximation error depending on use of Gaussian or

Laplace marginals. This example demonstrates the correspondence between
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the Laplace marginal implementation developed in TMB, and that of R-INLA

with method set to "laplace".

2. Section 6.2.2 considers an extended latent Gaussian model (ELGM) of a

tropical parasitic infection. The model was used in Section 5.2 of Bilodeau

et al. (2022), and is not compatible with R-INLA. This example demonstrates

the benefit of a more widely applicable INLA implementation.

6.2.1 Epilepsy GLMM

Thall and Vail (1990) considered a GLMM for an epilepsy drug double-blind clinical

trial (Leppik et al. 1985). This model was modified by Breslow and Clayton (1993)

and widely disseminated as a part of the BUGS [Bayesian inference using Gibbs

sampling; D. Spiegelhalter et al. (1996)] manual.

Patients i = 1, . . . , 59 were each assigned either a new drug Trti = 1 or a

placebo Trti = 0. Each patient made four visits the clinic j = 1, . . . , 4, and the

observations yij are the number of seizures of the ith person in the two weeks

preceding their jth clinic visit (Figure 6.5). The covariates used in the model

were baseline seizure counts Basei, treatment Trti, age Agei, and an indicator for

the final clinic visit V4j. Each of the covariates were centred. The observations

were modelled using a Poisson distribution

yij ∼ Poisson(eηij ), (6.61)

with structured additive predictor

ηij = β0 + βBase log(Basei/4) + βTrtTrti + βTrt×Base(Trti × log(Basei/4)) (6.62)

+ βAge log(Agei) + βV4V4j + ϵi + νij, i ∈ [59], j ∈ [4]. (6.63)

The prior distribution on each of the regression parameters, including the inter-

cept β0, was N (0, 1002). The patient ϵi ∼ N (0, 1/τϵ) and patient-visit νij ∼

N (0, 1/τν) random effects were IID with gamma precision prior distributions

τϵ, τν ∼ Γ(0.001, 0.001).
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Figure 6.5: The number of seizures in the treatment group was fewer, on average, than
the number of seizures in the control group. This is not sufficient to conclude that the
treatment was effective. The GLMM accounts for differences between the treatment and
control group, including in baseline seizures and age, and so can be used to help estimate
a causal treatment effect.

Table 6.1: The inference methods and software considered to fit the epilepsy GLMM in
Section 6.2.1.

Method Software
Section
6.2.1.1

Gaussian latent field marginals, EB over
hyperparameters

R-INLA

Section
6.2.1.1

Gaussian latent field marginals, grid over
hyperparameters

R-INLA

Section
6.2.1.1

Laplace latent field marginals, EB over
hyperparameters

R-INLA

Section
6.2.1.1

Laplace latent field marginals, grid over
hyperparameters

R-INLA

Section
6.2.1.2

Gaussian latent field marginals, EB over
hyperparameters

TMB

Section
6.2.1.3

Gaussian latent field marginals, AGHQ over
hyperparameters

TMB and aghq

Section
6.2.1.4

Laplace latent field marginals, EB over
hyperparameters

TMB

Section
6.2.1.5

Laplace latent field marginals, AGHQ over
hyperparameters

TMB and aghq

Section
6.2.1.6

NUTS tmbstan
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Method Software
Section
6.2.1.7

NUTS rstan

Inference for the epilepsy GLMM was conducted using a range of approaches

(Table 6.1). Section 6.2.1.8 compares the results. The foremost objective of this

exercise is to demonstrate correspondence between inferences obtained from R-INLA

and those from TMB. Furthermore, illustrative code is used throughout this section

to enhance understanding of the methods and software used. As such, this section

is more verbose than future sections.

6.2.1.1 INLA with R-INLA

The epilepsy data are available from the R-INLA package. The covariates may

be obtained and their transformations centred by:

centre <- function(x) (x - mean(x))

Epil <- Epil %>%

mutate(CTrt = centre(Trt),

ClBase4 = centre(log(Base/4)),

CV4 = centre(V4),

ClAge = centre(log(Age)),

CBT = centre(Trt * log(Base/4)))

The structured additive predictor in Equation (6.63) is then specified by:

formula <- y ~ 1 + CTrt + ClBase4 + CV4 + ClAge + CBT +

f(rand, model = "iid", hyper = tau_prior) +

f(Ind, model = "iid", hyper = tau_prior)

The object tau_prior specifies the Γ(0.001, 0.001) precision prior:

tau_prior <- list(prec = list(

prior = "loggamma",
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param = c(0.001, 0.001),

initial = 1,

fixed = FALSE)

)

The prior is specified as loggamma because R-INLA represents the precision

internally on the log scale, to avoid any τ > 0 constraints. Inference may then

be performed, specifying the latent field posterior marginals approach strat and

quadrature approach int_strat:

beta_prior <- list(mean = 0, prec = 1 / 100ˆ2)

epil_inla <- function(strat, int_strat) {

inla(

formula,

control.fixed = beta_prior,

family = "poisson",

data = Epil,

control.inla = list(strategy = strat, int.strategy = int_strat),

control.predictor = list(compute = TRUE),

control.compute = list(config = TRUE)

)

}

The object beta_prior specifies the N (0, 1002) regression coefficient prior. The

Poisson likelihood is specified via the family argument. Inferences may be then

obtained via the fit object:

fit <- epil_inla(strat = "gaussian", int_strat = "grid")

As described in Section 6.1.4.1, strat may be set to one of "gaussian",

"laplace", or "simplified.laplace" and int_strat may be set to one of "eb",

"grid", or "ccd".
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6.2.1.2 Gaussian marginals and EB with TMB

With TMB, the log-posterior of the model is specified using a C++ template. For

simple models, writing this template is usually a more involved task then specifying

the formula object required for R-INLA. The TMB C++ template epil.cpp for

the epilepsy GLMM is in Appendix C.1.1. This template specifies exactly the

same model as R-INLA in Section 6.2.1.1. It is not trivial to do this, because

each detail of the model must match.

Lines with a DATA prefix specify the fixed data inputs to be passed to TMB.

For example, the data y are passed via:

DATA_VECTOR(y);

Lines with a PARAMETER prefix specify the parameters ϕ = (x,θ) to be estimated.

For example, the regression coefficients β are specified by:

PARAMETER_VECTOR(beta);

It is recommended to specify all parameters on the real scale to help performance

of the optimisation procedure. More familiar versions of parameters, such as the

precision rather than log precision, may be created outside the PARAMETER section.

Lines of the form nll -= ddist(...) increment the negative log-posterior, where

dist is the name of a distribution. For example, the Gaussian prior distributions

on β are implemented by:

nll -= dnorm(beta, Type(0), Type(100), true).sum();

In R, the TMB user template may now be compiled and linked:

compile("epil.cpp")

dyn.load(dynlib("epil"))

An objective function obj implementing p̃LA(θ,y) and its first and second

derivatives may then be created:

obj <- TMB::MakeADFun(

data = dat,
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parameters = param,

random = c("beta", "epsilon", "nu"),

DLL = "epil"

)

The object dat is a list of data inputs passed to TMB. The object param is a

list of parameter starting values passed to TMB. The argument random determines

which parameters are to be integrated out with a Gaussian approximation, here set

to c("beta", "epsilon", "nu"). Mathematically, these parameters correspond

to the latent field

(β0, βBase, βTrt, βTrt×Base, βAge, βV4 , ϵ1, . . . , ϵ59, ν1,1, . . . , ν59,4) = (β, ϵ,ν) = x. (6.64)

The objective function obj may then be optimised using a gradient based

optimiser to obtain θ̂LA. Here I use a quasi-Newton method (Dennis Jr et al. 1981)

as implemented by nlminb from the stats R package, making use of the first

derivative obj$gr of the objective function:

opt <- nlminb(

start = obj$par,

objective = obj$fn,

gradient = obj$gr,

control = list(iter.max = 1000, trace = 0)

)

The sdreport function is used to evaluate the Hessian matrix of the parameters

at a particular value. Typically, these Hessian matrices are for the hyperparameters,

and based on the marginal Laplace approximation. Setting par.fixed to the

previously obtained opt$par returns ĤLA. However, by setting getJointPrecision

= TRUE the the full Hessian matrix for the hyperparameters and latent field

together is returned:
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Figure 6.6: A submatrix of the full parameter Hessian obtained from TMB::sdreport
with getJointPrecision = TRUE on the log scale. Entries for the latent field parameters
ϵ and ν are omitted due to their respective lengths of 56 and 236. Light grey entries
correspond to zeros on the real scale, which cannot be log transformed.

sd_out <- TMB::sdreport(

obj,

par.fixed = opt$par,

getJointPrecision = TRUE

)

Note that the epilepsy GLMM may also be succinctly fit in a frequentist setting

(that is, using improper hyperparameter priors p(θ) ∝ 1) using the formula interface

provided by glmmTMB:

fit <- glmmTMB(

y ~ 1 + CTrt + ClBase4 + CV4 + ClAge + CBT + (1 | rand) + (1 | Ind),

data = Epil,

family = poisson(link = "log")

)

6.2.1.3 Gaussian marginals and AGHQ with TMB

The objective function obj created in Section 6.2.1.2 may be directly passed

to aghq to perform inference by integrating the marginal Laplace approximation

over the hyperparameters using AGHQ. The argument k specifies the number

of quadrature nodes to be used per hyperparameter dimension. Here there are

two hyperparameters θ = (τϵ, τν), and k is set to three, such that in total there

are 32 = 9 quadrature nodes:

130



Fast approximate Bayesian inference

init <- c(param$l_tau_epsilon, param$l_tau_nu)

fit <- aghq::marginal_laplace_tmb(obj, k = 3, startingvalue = init)

Draws from the mixture of Gaussians approximating the latent field posterior

distribution (Equation (6.48)) can be obtained by:

samples <- aghq::sample_marginal(aghq, M = 1000)$samps

For a more complete aghq vignette, see Stringer (2021).

6.2.1.4 Laplace marginals and EB with TMB

The Laplace latent field marginal p̃LA(xi,θ,y) may be obtained using TMB by

setting random to x−i in the MakeADFun function call to approximate p(x−i |xi,θ,y)

with a Gaussian distribution. However, it is not directly possible to do this, because

the random argument takes a vector of strings as input (e.g. c("beta", "epsilon",

"nu")) and does not have a native method for indexing. Instead, I took the following

steps to modify the TMB C++ template and enable the desired indexing:

1. Include DATA_INTEGER(i) to pass the index i to TMB via the data argument

of MakeADFun.

2. Concatenate the latent field to PARAMETER_VECTOR(x_minus_i) and PARAMETER(x_i)

such that random can be set to x_minus_i in the call to MakeADFun.

3. Include DATA_IVECTOR(x_lengths) and DATA_IVECTOR(x_starts) to pass

the (integer) start point and lengths of each subvector of x via the data

argument of MakeADFun. The jth subvector may then be obtained from

within the TMB template via x.segment(x_starts(j), x_lengths(j)).

The modified TMB C++ template epil_modified.cpp for the epilepsy GLMM

is in Appendix C.1.2, and may be compared to the unmodified version to provide an

example of implementing the above steps. After suitable alterations are made to dat

and param, it is then possible to obtain the desired objective function in TMB via:
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compile("epil_modified.cpp")

dyn.load(dynlib("epil_modified.cpp"))

obj_i <- MakeADFun(

data = dat,

parameters = param,

random = "x_minus_i",

DLL = "epil_modified",

silent = TRUE,

)

This section takes an EB approach, fixing the hyperparameters to their modal

value θ = θ̂LA obtained previously in opt. The latent field marginals approximation

is then directly proportional to the unnormalised Laplace approximation obtained

above as obj_i, evaluated at (xi, θ̂LA)

p̃(xi | y) ≈ p̃LA(xi | θ̂LA,y)p̃LA(θ̂LA | y) (6.65)

∝ p̃LA(xi, θ̂LA,y). (6.66)

This expression may be evaluated at a set of GHQ nodes z ∈ Q(1, l) adapted

z 7→ xi(z) based on the mode and standard deviation of the Gaussian marginal. Here,

l = 5 quadrature nodes were chosen to allow spline interpolation of the resulting log-

posterior. Each evaluation of obj_i, which involves an inner optimisation loop to

compute the Laplace approximation, can be initialised by x−i set to the mode of the

full N -dimensional Gaussian approximation pG(x | θ̂LA,y) with the ith entry removed

x̂(θ)−i. This is an efficient approach because the (N−1)-dimensional posterior mode,

with xi fixed, is likely to be similar to the N -dimensional posterior mode with the

ith entry removed. A normalised posterior can be obtained by computing a de novo

posterior normalising constant based on the set of evaluated l quadrature nodes.

This approach requires creation of the objective function obj_i for i = 1, . . . , N .

Each of these functions are then evaluated at a set of l quadrature nodes. It is

inefficient to run MakeADFun from scratch for each i, when only one data input i
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is changing. TMB does have a DATA_UPDATE macro, which would allow changing

of data “on the R side” without retaping via:

obj_i$env$data$i <- i

Although this approach would be more efficient, if else statements on data items

which can be updated (as used in epil_modified.cpp) are not supported, so

this is not yet possible.

6.2.1.5 Laplace marginals and AGHQ with TMB

The approach taken in Section 6.2.1.4 may be extended by integrating the

marginal Laplace approximation with respect to the hyperparameters. To perform

this integration, the quadrature nodes used to integrate pLA(θ,y) may be reused.

The latent field marginal approximation is then

p̃(xi | y) ∝
∑

z∈Q(m,k)
p̃LA(xi,θ(z),y)ω(z). (6.67)

As in Section 6.2.1.4 this expression may be evaluated at a set of l quadrature

nodes, and normalised de novo. Each objective function inner optimisation can

be initialised using the mode x̂(θ(z))−i of pG(x | θ(z),y). Integration over the

hyperparameters requires each of the N objective functions to be evaluated at k× l

points, rather than the 1 × l points required in the EB approach. The complete

algorithm is given in Appendix C.3.

6.2.1.6 NUTS with tmbstan

Running NUTS with tmbstan using the objective function obj is easy to do:

fit <- tmbstan::tmbstan(obj = obj, chains = 4, laplace = FALSE)

As specified above, the objective function with no marginal Laplace approxima-

tion is used. To instead use the marginal Laplace approximation, set laplace =

TRUE. Four chains of 2000 iterations, with the first 1000 iterations from each chain

discarded as warm-up, were run. Convergence diagnostics are in Appendix C.1.4.1.
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Figure 6.7: Percentage difference in posterior summary estimate obtained from NUTS
as compared to that obtained from a Gaussian (Section 6.2.1.3) or Laplace marginal
(Section 6.2.1.5) with AGHQ over the hyperparameters. NUTS results were obtained with
tmbstan. Results from R-INLA and TMB are similar, especially for the posterior mean, but
do differ in places. Differences could be attributable to bias corrections used in R-INLA.

6.2.1.7 NUTS with rstan

For interest in the relative inefficiency of tmbstan, the epilepsy model was

also implemented in Stan. The Stan C++ template epil.stan for the epilepsy

GLMM is in Appendix C.1.3. This may be of interest to users familiar with Stan

syntax, to help provide context for TMB. The Stan template was validated as be

equivalent to the TMB template up to a constant of proportionality. Inferences

from Stan may be obtained by

fit <- rstan::stan(file = "epil.stan", data = dat, chains = 4)

Like for tmbstan, four chains of 2000 iterations, with 1000 iterations of burn-in,

were run. Convergence diagnostics are in Appendix C.1.4.2.

6.2.1.8 Comparison

Posterior means and standard deviations for the the six regression parameters

β from the inference methods implemented in TMB (Section 6.2.1.2, 6.2.1.3, 6.2.1.3,

6.2.1.5) were highly similar to their R-INLA analogues in Section 6.2.1.1 (Figure 6.7).
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Figure 6.8: The ECDF and ECDF difference for the β0 latent field parameter. For this
parameter, the Gaussian marginal results are inaccurate, and are corrected almost entirely
by the Laplace marginal. An ECDF difference of zero corresponds to obtaining exactly
the same results as NUTS, taken to be the gold-standard. Crucially, results obtained
using R-INLA and TMB implementations are similar.

Posterior distributions obtained were also similar. Figure 6.8 shows ECDF difference

plots for Gaussian or Laplace marginals from TMB and R-INLA (as compared with

results from NUTS implemented in tmbstan) for β0. These results provide evidence

that the implementation of INLA in TMB is correct.

Figures 6.9 shows the number of seconds taken to fit the epilepsy GLMM model

for each approach. Gaussian marginals with either EB or AGHQ via TMB were the

fastest approach. All of the approaches using R-INLA took a similar amount of time.

The approaches using TMB to implement Laplace marginals were slower than their

equivalent in R-INLA. The TMB implementation is relatively naive, based on a simple

for loop, and does not use the more advanced approximations of R-INLA. Laplace

marginals in TMB with AGHQ (k2 = 32 = 9 quadrature nodes) took 3.4 times as
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Figure 6.9: The number of seconds taken to perform inference for the epilepsy GLMM
using each method and software implementation given in Table 6.1.

long as Laplace marginals in TMB with EB (k2 = 12 = 1 quadrature node).

For this problem, the tmbstan implementation of NUTS took 38.9% of time

of the rstan implementation. Diagnostics (Figures C.1 and C.2) show that

both implementations converged. Monnahan and Kristensen (2018) (Supporting

information) found runtime with rstan and tmbstan to be comparable, so the

relatively large difference in this case is surprising.

6.2.2 Loa loa ELGM

Bilodeau et al. (2022) considered a ELGM for the prevalence of the parasitic worm

Loa loa. Counts of cases yi ∈ N+ from a sample of size ni ∈ N+ were obtained from

field studies in n = 190 villages in Cameroon and Nigeria [Schlüter et al. (2016);

Figure 6.10]. Some areas are thought to be unsuitable for disease transmission, and

possibly as a result there are relatively high number of villages with zero prevalence.

To account for the possibility of structural zeros, following Diggle and Giorgi (2016),

a zero-inflated binomial likelihood was used

p(yi) = (1 − ϕ(si))I(yi = 0) + ϕ(si)Bin(yi |ni, ρ(si)) (6.68)

136



Fast approximate Bayesian inference

Figure 6.10: Empirical prevalence of Loa loa in 190 sampled villages in Cameroon and
Nigeria. The map in Panel A shows the village locations, empirical prevalences, presence
of zeros, and sample sizes. The zeros are typically located in close proximity to each other.
The histogram in Panel B shows the empirical prevalences, and high number of zeros.

where si ∈ R2 is the village location, ϕ(si) ∈ [0, 1] is the suitability probability,

and ρ(si) ∈ [0, 1] is the disease prevalence. The prevalence and suitability were

modelled jointly using logistic regressions

logit[ϕ(s)] = βϕ + u(s), (6.69)

logit[ρ(s)] = βρ + v(s). (6.70)

The two regression coefficients βϕ and βρ were given diffuse Gaussian prior distribu-

tions

βϕ, βρ ∼ N (0, 1000). (6.71)

Independent Gaussian processes u(s) and v(s) were specified by a Matérn kernel

(Stein 1999) with shared hyperparameters. Gamma penalised complexity (Simpson
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et al. 2017; Fuglstad et al. 2019) prior distributions were used for the standard

deviation σ and range ρ hyperparameters such that (Brown 2015)

P(σ < 4) = 0.975, (6.72)

P(ρ < 200km) = 0.975. (6.73)

The smoothness parameter ν was fixed to 1.

The zero-inflated likelihood in Equation (6.68) is not compatible with R-INLA.

Section 2.2 of Brown (2015) demonstrates use of R-INLA to fit a simpler LGM

model which includes covariates. Instead, Bilodeau et al. (2022) implemented this

model in TMB. Inference was then performed using Gaussian marginals and AGHQ

via aghq and NUTS via tmbstan. This section considers inference using three

approaches (Table 6.2), extending Bilodeau et al. (2022) by including AGHQ

with Laplace marginals.

Table 6.2: The inference methods and software considered to fit the Loa loa ELGM in
Section 6.2.2.

Method Software Details
Gaussian, AGHQ TMB and aghq k = 3
Laplace, AGHQ TMB and aghq k = 3
NUTS tmbstan 4 chains of 5000 iterations, with

default NUTS settings as
implemented in rstan
(Carpenter et al. 2017)

Bilodeau et al. (2022) found that NUTS did not converge for the full model,

but did converge when the values of βϕ and βρ were fixed at their posterior mode

(obtained using AGHQ with Gaussian marginals). To allow for comparison between

Gaussian and Laplace marginals, the same approach was taken here.

After obtaining posterior inferences at each si, the gstat::krige function

(E. J. Pebesma 2004) was used to implement conditional Gaussian field simulation

[E. Pebesma and R. Bivand (2023); Chapter 12] over a fine spatial grid. Inde-

pendent latent field and hyperparameter samples were used in each conditional
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Figure 6.11: Posterior mean of the suitability E[ϕLA(s)] (Panel A) and prevalence
E[ρLA(s)] (Panel B) random fields computed using Laplace marginals. Inferences over
this fine spatial grid were using conditional Gaussian field simulation as implemented by
gstat::krige.

simulation. For each method (Table 6.2) 500 conditional Gaussian field simulations

were obtained.

6.2.2.1 Results

Figure 6.11 shows the suitability and prevalence posterior means across the

fine grid obtained using AGHQ with Laplace marginals.

For both the suitability and prevalence posterior mean, using Laplace marginals

rather than Gaussian marginals substantially reduced error compared to NUTS

(Figures 6.12 and 6.13). As the hyperparameter posteriors for each approach were the

same, differences in Gaussian field simulation results were due to differences in latent

field posterior marginals at each of the 190 sites, shown in Figure 6.14. At some

sites, the differences in ECDF were substantial (Figure 6.15). This improvement is
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Figure 6.12: Difference between the suitability posterior means with Gaussian marginals
E[ϕG(s)] and Laplace marginals E[ϕLA(s)] to NUTS results. While the Gaussian
approximation appears to systematically underestimate suitability, results from the
Laplace approximation are substantially closer to results from NUTS. As βϕ was fixed then
differences in approximation accuracy between the Gaussian and Laplace approximations
of ϕ(s) are due only to differences in estimation of u(s). The diverging colour palette
used in this figure is from Thyng et al. (2016).

even given that draws from the Laplace marginals do not take posterior dependences

into account like the draws from the mixture of Gaussians used to construct the

Gaussian marginals. Figure C.3 shows that the results from NUTS were suitable

for use, and therefore that this comparison is valid.

Laplace marginals with AGHQ took 12% of time taken (23.1 hours) by NUTS

(Figure 6.16). That said, Gaussian marginals with AGHQ took less than a minute

to run: substantially less than the 2.77 hours taken by the Laplace marginals.

A less naive Laplace implementation may achieve a runtime more competitive

to the Gaussian.
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Figure 6.13: Difference between the prevalence posterior means with Gaussian marginals
E[ρG(s)] and Laplace marginals E[ρLA(s)] to NUTS results. Like the suitability in Figure
6.12, the error the the Gaussian approximation is higher than that of the Laplace
approximation. As βρ was fixed this difference is as a result in differences in estimation
of v(s). The diverging colour palette used in this figure is from Thyng et al. (2016).

6.3 The Naomi model

The work in this chapter was conducted in search of a fast and accurate Bayesian

inference method for the Naomi model (Jeffrey W Eaton et al. 2021). Software has

been developed for Naomi to allow countries to input their data and interactively

generate estimates during week long workshops as a part of a yearly process

supported by UNAIDS. Generation of estimates by country teams, rather than

external agencies or researchers, is an important and distinctive feature of the HIV

response. Drawing on expertise closest to the data being modelled improves the

accuracy of the process, as well as strengthening trust in the resulting estimates,

creating a virtuous cycle of data quality, use and ownership (Noor 2022). To

allow interactive review and iteration of model results by workshop participants,

any inference procedure for Naomi should ideally be fast and have low memory

usage. Additionally, it should be reliable and automatic, across a range of country
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Figure 6.14: Absolute difference between the Gaussian and Laplace marginal posterior
means and standard deviations to NUTS results at each u(si), v(si) : i ∈ [190]. Relative
differences are in Figure C.4. For close to every node, the Laplace approximation produced
a more accurate posterior mean than the Gaussian approximation. For the posterior
standard deviation (SD), the picture was more mixed.
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Figure 6.15: The element of the latent field with maximum difference in absolute
difference to NUTS for the posterior mean was u184. While the Gaussian approximation
has substantial error as compared with NUTS, the Laplace approximation is a close
match.

Figure 6.16: The number of minutes taken to perform inference for the Loa loa ELGM
using each approach given in Table 6.2.
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settings. Naomi is a complex model, comprised of multiple linked generalized linear

mixed models (GLMMs), and as such these requirements present a challenging

Bayesian inference problem.

This section begins (Section 6.3.1) by describing a simplified version of Naomi.

The model is simplified in that it is defined only at the time of the most recent

household survey with HIV testing. The nowcasting and temporal projection

components of the complete model are omitted. These time points play a limited

role in inference as they correspond to a small proportion of the total data. As

such, findings about inference for the simplified model are likely transferable to the

complete model. Description of some features of the simplified model is left to the

more exhaustive Appendix C.4. After outlining the model, Section 6.3.2 explains

why it is an ELGM (Stringer et al. 2022) rather than an LGM (Håvard Rue,

Martino, and Chopin 2009).

6.3.1 Model structure

Naomi synthesises data from three sources to estimate HIV indicators at a district-

level, by age and sex. It may be described as having three components, corresponding

to these three data sources. The model components are:

• the household survey component (Section 6.3.1.2);

• the antenatal care (ANC) clinic testing component (Section 6.3.1.4);

• the antiretroviral therapy (ART) attendance component (Section 6.3.1.4).

After specifying common notation used throughout the model (Section 6.3.1.1)

each of these components is described in turn.

6.3.1.1 Notation

Consider a country in sub-Saharan Africa where a household survey with complex

design has taken place. Let x ∈ X index district, a ∈ A index five-year age group,

and s ∈ S index sex. For ease of notation, let i index the finest district-age-sex

division included in the model. (A district-age-sex specific quantity zx,a,s may then
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be written as zi. When required the district, age, and sex corresponding to the

index i may be recovered by x(i) = x, a(i) = a, and s(i) = s.)

Let:

• Ni ∈ N be the known, fixed population size;

• ρi ∈ [0, 1] be the HIV prevalence;

• αi ∈ [0, 1] be the ART coverage;

• κi ∈ [0, 1] be the proportion recently infected among HIV positive persons;

• λi > 0 be the annual HIV incidence rate.

Some observations are made at an aggregate level over a collection of strata i

rather than for a single i. Let I ⊆ X × A × S be a set of indices i for which an

aggregate observation is reported. The set of all I is denoted I such that I ∈ I.

6.3.1.2 Household survey component

Independent logistic regression models are specified for HIV prevalence and

ART coverage in the general population. Without giving the linear predictors

in detail, these models are specified by

logit(ρi) = ηρi , (6.74)

and

logit(αi) = ηαi . (6.75)

HIV incidence rate is modelled on the log scale as

log(λi) = ηλi . (6.76)

The structured additive predictor ηλi includes terms for adult HIV prevalence and

adult ART coverage. The proportion recently infected among HIV positive persons

is linked to HIV incidence via

κi = 1 − exp
(

−λi · 1 − ρi
ρi

· (ΩT − βT ) − βT

)
, (6.77)
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where the mean duration of recent infection ΩT and the proportion of long-term

HIV infections misclassified as recent βT are set based on informative priors for

the particular HIV test used.

The three processes in Equations (6.74), (6.75), and (6.76) are each primarily

informed by household survey data. Let j denote a surveyed individual, in district-

age-sex strata i(j). Weighted aggregate survey observations are calculated based

on individual responses θj ∈ {0, 1} as

θ̂I =
∑
i(j)∈I wj · θj∑
i(j)∈I wj

, (6.78)

Survey weights wj for each of θ ∈ {ρ, α, κ} are supplied by the survey provider. These

weights aim to reduce bias by decreasing possible correlation between response and

recording mechanism (Meng 2018). The weighted aggregate number of outcomes

are obtained by multiplying Equation (6.78) by the Kish effective sample size

[ESS; Kish (1965)]

yθI = mθ
I θ̂I , (6.79)

where

mθ
I =

(∑
i(j)∈I wj

)2

∑
i(j)∈I w

2
j

. (6.80)

As the Kish ESS is maximised by constant survey weights, in exchange for reducing

bias, survey weighting increases variance. Equations (6.78) and (6.80) are slightly

imprecise in the notation used does not reflect the fact that j only runs over

individuals within the relevant denominator. In particular, for ART coverage α

and the proportion recently infected among HIV positive persons κ, only those

individuals who are HIV positive are included in the set. The denominator for

HIV prevalence ρ includes all individuals.

The weighted aggregate number of outcomes are modelled using a binomial

working likelihood (C. Chen et al. 2014) defined to operate on the reals

yθI ∼ xBin(mθ
I , θI). (6.81)
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The terms θI are the following weighted aggregates

ρI =
∑
i∈I Niρi∑
i∈I Ni

, αI =
∑
i∈I Niρiαi∑
i∈I Niρi

, κI =
∑
i∈I Niρiκi∑
i∈I Niρi

, (6.82)

where the denominators of αI and κI reflect their restriction to HIV positive persons.

6.3.1.3 ANC testing component

Women attending ANC clinics are routinely tested for HIV, to help prevent

mother-to-child transmission.

HIV prevalence ρANC
i ∈ [0, 1] and ART coverage αANC

i ∈ [0, 1] among pregnant

women are modelled as offset from the general population indicators. (For s(i)

male, these quantities are not defined.) Again not detailing the linear predictors,

the model is of the form

logit(ρANC
i ) = logit(ρi) + ηρ

ANC

i , (6.83)

logit(αANC
i ) = logit(αi) + ηα

ANC

i . (6.84)

The terms ηρ
ANC

i and ηαANC
i can be interpreted as the differences in HIV prevalence

and ART coverage between pregnant women attending ANC, and the general

population. As such, both the household survey data informs ANC indicators, and

the ANC indicator informs general population indicators.

These two processes are informed by likelihoods specified for aggregate ANC

clinic data from the year of the most recent survey. Let:

• the number of ANC clients with ascertained status be fixed as mρANC

I ;

• the number of those with positive status are yρ
ANC

I ≤ mρANC

I ;

• the number of those already on ART prior to their first ANC visit are

yα
ANC

I ≤ yρ
ANC

I .

These data are modelled using nested binomial likelihoods

yρ
ANC

I ∼ Bin(mρANC

I , ρANC
I ),

yα
ANC

I ∼ Bin(yρ
ANC

I , αANC
I ).
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It is not necessary to use an extended binomial working likelihood, as in Section

3.5, because the ANC data are not survey weighted and therefore are integer

valued. Analogous to Equation (6.82) in the household survey component, the

weighted aggregates used here are

ρANC
I =

∑
i∈I Ψiρ

ANC
i∑

i∈I Ψi

, αANC
I =

∑
i∈I Ψiρ

ANC
i αANC

i∑
i∈I ΨiρANC

i

,

where Ψi are the number of pregnant women, which are assume to be fixed.

6.3.1.4 ART attendance component

Data on attendance of ART clinics are routinely collected. These data provide

helpful information about HIV prevalence and coverage of ART, but are challenging

to use because people living with HIV sometimes choose to access ART services

outside of the district that they reside in. (Indeed, this section of the model remains

a challenge, and is under active development (Esra et al. 2024).)

Multinomial logistic regression equations are used to model the probabilities of

individuals accessing treatment outside their home district. Briefly, let γx,x′ be the

probability that a person on ART residing in district x receives ART in district

x′. These probabilities are set to γx,x′ = 0 unless x = x′ or the two districts are

neighbouring such that x ∼ x′. As such, it is assumed that no one travels beyond

their district or its immediate neighbours to receive ART services. (Of course, in

reality this assumption is violated.) The log-odds are modelled using a structured

additive predictor which only depends on the home district x

γ̃x,x′ = logit(γx,x′) = ηγ̃x . (6.85)

As a result, it is assumed that travel to each neighbouring district, for all age-

sex strata, is equally likely.

Let the number of people observed receiving ART in strata i be yAi with

corresponding aggregate

yAI =
∑
i∈I

yAi . (6.86)
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Let the probability of a person in strata i travelling from district x(i) = x to

x′ to receive ART be

πi,x(i)=x,x′ = ρiαiγx(i)=x,x′ . (6.87)

These probabilities are the product of three probabilities, each for a person in strata i:

1. the probability of a having HIV ρi,

2. the probability of taking ART αi,

3. the probability of travelling from district x(i) = x to district x′ to receive

ART γx(i)=x,x′ .

Let the unobserved count of people in strata i who travel to x′ to receive

ART be Ai,x(i)=x,x′ , such that

Ai =
∑

x′∼x,x′=x
Ai,x(i)=x′,x. (6.88)

Each unobserved count can be considered as arising from a binomial distribution,

with sample size given by the population in strata i, here with x(i) = x′ such that

Ai,x(i)=x′,x ∼ Bin(Ni,x(i)=x′ , πi,x(i)=x′,x). (6.89)

Each aggregate attendance observation (Equation (6.86)) is modelled using a

Gaussian approximation to a sum of binomials. This sum is over both the strata

i ∈ I and the number of ART clients travelling from district x(i) = x′ to x to

receive treatment. The Gaussian approximation is

yAI ∼ N (µAI , σAI
2), (6.90)

where the mean is

µAI =
∑
i∈I

∑
x′∼x,x′=x

Ni,x(i)=x′ · πi,x(i)=x′,x, (6.91)

and the variance is

σAI
2 =

∑
i∈I

∑
x′∼x,x′=x

Ni,x(i)=x′ · πi,x(i)=x′,x · (1 − πi,x(i)=x′,x). (6.92)

Equations (6.91) and (6.92) are based on a Gaussian approximation to the binomial

distribution Bin(n, p) with mean np and variance np(1 − p), together with the

equations for a linear combination of Gaussian random variables.
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6.3.2 Naomi as an ELGM

In all, Naomi is a joint model on the observations

y = (yθI ), θ ∈ {ρ, α, κ, ρANC, αANC, A}, I ∈ I. (6.93)

The observations are modelled using the structured additive predictor η, which

includes intercept effects, age random effects, and spatial random effects which

may be concatenated into the latent field x. The latent field is controlled by

hyperparameters θ which include standard deviations, first-order autoregressive

model correlation parameters, and reparameterised Besag-York-Mollie model [BYM2;

Simpson et al. (2017)] proportion parameters. These features are described in

more detail in Appendix C.4.

Naomi has a large Gaussian latent field, governed by a smaller number of

hyperparameters m < N . However, it has complexities which place it outside the

class of LGMs, as defined in Section 3.3.4. Instead, it is an ELGM, as defined in

Section 3.3.5. In an ELGM, each mean response is allowed to depend non-linearly

upon more than one structured additive predictor. The departures of Naomi from

the LGM framework are enumerated below. When dependence on a specific number

of structured additive predictors is given, it is in isolation, rather than in conjunction.

1. Throughout Naomi, processes are modelled at the finest district-age-sex

division i, but likelihoods are defined for observations aggregated over sets

of indices i ∈ I. As such, these aggregate observations are related to |I|

structured additive predictors, rather than just one.

2. Multiple link functions are used in Naomi, such that there is no one inverse

link function g as specified in definition of an LGM. This is a relatively minor

point, and it is possible to specify models with several likelihoods in R-INLA

by setting family to be vector valued [Section 6.4; Gómez-Rubio (2020)].

3. In Section 6.3.1.2, HIV incidence depends on district-level adult HIV prevalence

and ART coverage (Equation (C.19))). Each log(λi) therefore depends on
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28 structured additive predictors, where 28 arises by the product of 2 sexes

(male and female), 7 age groups ({15-19, . . . , 45-49}), and 2 indicators, HIV

prevalence and ART coverage. This reflects basic HIV epidemiology: incidence

of sexually transmitted HIV is proportional to unsuppressed viral load among

an individual’s potential sexual partners. The district-level adult averages are

used as a proxy.

4. In Section 6.3.1.2, the proportion recently infected κi is given by a non-linear

function (Equation (6.77)) of HIV incidence λi, HIV prevalence ρi, mean

duration of recent infection ΩT and proportion of long-term HIV infections

misclassified as recent βT . Though arguably a contorting of the ELGM

framework, by considering ΩT and βT as (Gaussian) linear predictors, then

each κi depends on four structured additive predictors.

5. In Section 6.3.1.3, HIV prevalence and ART coverage among pregnant women

are modelled as offset from their respective indicators in the general population.

Thus each mean response depends on two structured additive predictors. The

copy feature in R-INLA [Section 6.5; Gómez-Rubio (2020)] allows for this type

of model structure.

6. In Section 6.3.1.3, nested binomial likelihoods are used.

7. In Section 6.3.1.4 a multinomial model with softmax link function is used. The

multinomial likelihood takes as input |{x′ : x′ ∼ x}| + 1 structured additive

predictors, one for each neighbouring district plus one for remaining in the

home district.

8. In Section 6.3.1.4 the probability of an individual receiving ART in a given

district is the product of three probabilities.

Though intended for use with LGMs, the advanced features of R-INLA [Chapter

6; Gómez-Rubio (2020)] allow for fitting of some ELGMs as described above. In

some sense then, the above exercise is mostly academic rather than practical. The
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crux is that Naomi cannot be fit using R-INLA because it is not possible to specify

such a complex model using a formula interface. The limitations of modelling with

formula interfaces are not unique to R-INLA. Indeed, any such statistical software

will see requests for users for additional features. The practical impossibility of

meeting all feature requests motivates a more universal INLA implementation

(Section 6.2) for advanced users.

6.4 AGHQ in moderate dimensions

Inference for the Naomi model was previously conducted using a marginal Laplace

approximation, and optimisation over the hyperparameters, implemented using TMB.

This approach was illustrated for the epilepsy example in Section 6.2.1.2 and is

analogous for Naomi. It would be desirable to instead integrate with respect to the

hyperparameters, taking an INLA-like approach as described in Section 6.1.3.

Section 6.2 attends to part of the challenge, by developing INLA methods which

compatible with the Naomi model log-posterior as implemented in TMB. However,

naive quadrature methods are not directly applicable to Naomi. This is because

Naomi has m = 24 hyperparameters. Although m = 24 cannot be described as

high-dimensional, it is certainly more than the m < 4 or so hyperparameters typical

for use of INLA. Hence here the term moderate-dimensional is used. Naive use

of AGHQ with the product rule requires evaluation of |Q(m, k)| = km quadrature

points. This would be intractable for m = 24 and any k > 1. As a result, a

quadrature rule which does not scale exponentially is required for integrating out

the Naomi model hyperparameters.

This section focuses on the development of an AGHQ rule for moderate dimension,

for use within an inference procedure for the Naomi model. Though the rule is to

be applied within a nested Laplace approximation approach, it is not limited

to this setting.
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6.4.1 AGHQ with variable levels

Rather than having the same number of quadrature nodes for each dimension of

θ, it is possible to use a variable number of nodes per dimension. In line with

the terminology used in the mvQuad package, the number of nodes per dimension

are referred to as “levels”. Let k = (k1, . . . , km) be a vector of levels, where each

kj ∈ Z+. A GHQ grid with (potentially) variable levels is then given by

Q(m,k) = Q(1, k1) × · · · × Q(1, km). (6.94)

The size of this grid is given by the product of the levels |Q(m,k)| = ∏m
j=1 kj. The

corresponding weighting function is given by

ω(z) =
m∏
j=1

ωkj
(zj). (6.95)

This expression is a product of the univariate weighting functions for the relevant

GHQ rule with kj nodes.

6.4.2 Principal components analysis

A special case of the variable levels approach above is to set the first s ≤ m levels

to be k and the remaining m − s ≥ 0 levels to be one. Denote Q(m, s, k) to be

Q(m,k) with levels kj = k, j ≤ s and kj = 1, j > s for some s ≤ m. For example,

for m = 2 and s = 1 then k = (k, 1).

When the spectral decomposition is used to adapt the quadrature nodes, this

choice of levels is analogous to principal components analysis (PCA). Figure 6.17

illustrates PCA-AGHQ for a case when m = 2 and s = 1. Since AGHQ with

k = 1 corresponds to the Laplace approximation, PCA-AGHQ can be interpreted

as performing AGHQ on the first s principal components of the inverse curvature,

and a Laplace approximation on the remaining m − s principal components. As

such, it may be argued that PCA-AGHQ provides a natural compromise between

the EB and AGHQ integration strategies.
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Figure 6.17: Consider the function f(z1, z2) = sn(0.5z1, α = 2) ·sn(0.8z1 −0.5z2, α = −2)
as described in Figure 6.3. Panel A shows the usual AGHQ nodes with a spectral matrix
decomposition. Panel B shows the adapted PCA-AGHQ nodes Q(2, 1, 3). These nodes
correspond exactly to those in Panel A along the first eigenvector. The proportion of
variation explained by this direction is around 95%, with the remaining 5% explained by
the second eigenvector.

For concreteness, the normalising constant obtained by application of PCA-

AGHQ to integration of the marginal Laplace approximation (Equation (6.40)) is

given by

p̃PCA(y) = |ÊLAΛ̂1/2
LA |

∑
z∈Q(m,s,k)

p̃LA(ÊLA,sΛ̂1/2
LA,sz + θ̂LA,y)ω(z), (6.96)

where ÊLA,s is an m× s matrix containing the first s eigenvectors, Λ̂LA,s is the s× s

diagonal matrix containing the first s eigenvalues, and

ω(z) =
s∏
j=1

ωs(zj) ×
m∏

j=s+1
ω1(zj). (6.97)

6.5 Malawi case-study

This section presents a case-study of approximate Bayesian inference methods

applied to the Naomi model in Malawi. Data from Malawi has previously been
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Figure 6.18: District-level HIV prevalence, ART coverage, and new HIV cases and HIV
incidence for adults 15-49 in Malawi. Inference here was conducted using a Gaussian
approximation and EB via TMB.

used to demonstrate the Naomi model, including as a part of the naomi R package

vignette available from https://github.com/mrc-ide/naomi. Malawi was chosen

for the vignette and this case-study in part because it has a small number of districts,

n = 30, limiting the computational demand of the model.

Three Bayesian inference approaches were considered:

1. Gaussian marginals and EB with TMB. This approach was previously used in

production for Naomi. As short-hand, this approach is referred to as GEB.

2. Gaussian marginals and PCA-AGHQ with TMB. This is a novel approach,

enabled by the methodological work of Section 6.4. As short-hand, this

approach is referred to as GPCA-AGHQ.

3. NUTS with tmbstan. Conditional on assessing chain convergence and suit-

ability, to be discussed in Section 6.5.1, inferences from NUTS represent a

gold-standard.

The TMB C++ user-template used to specify the log-posterior, described in

Appendix C.4.4, was the same for each approach. The dimension of the latent

field was N = 467 and the dimension of the hyperparameters was m = 24. For

GEB and GPCA-AGHQ, hyperparameter and latent field samples were simulated

155

https://github.com/mrc-ide/naomi


Fast approximate Bayesian inference

following deterministic inference. For all methods, age-sex-district specific HIV

prevalence, ART coverage and HIV incidence were simulated from the latent field

and hyperparameter posterior samples. Model outputs from GEB are illustrated

in Figure 6.18.

6.5.1 NUTS convergence and suitability

The Naomi model was difficult to efficiently sample from using NUTS via tmbstan.

Four chains run in parallel for 100 thousand iterations each were required to obtain

acceptable NUTS diagnostics. For ease-of-storage, the samples were thinned by a

factor of 20, resulting in 5000 iterations kept per chain, with the first 2500 removed

as burn-in. The effective sample size ratios were typically low (Figure C.6). The

lowest effective sample size was 208 (2.5% quantile 318, 50% quantile 1231, and

97.5% quantile 2776; Panel C.7A). The largest potential scale reduction factor

was 1.021 (2.5% quantile 1, 50% quantile 1.003, and 97.5% quantile 1.017; Panel

C.7B). Though inaccuracies remain possible, these diagnostics are sufficient to treat

inferences obtained from NUTS as a gold-standard.

Correlation structure in the posterior can result in sampler inefficiency. Each of

the four pairs of AR1 log standard deviation log(σ) and logit lag-one autocorrelation

parameter logit(ϕ) posteriors were positively correlated (mean absolute correlation

0.81, Figure C.8). These parameters are partially identifiable as variation can either

be explained by high standard deviation and high autocorrelation or low standard

deviation and low autocorrelation. On the other hand, the BYM2 log standard

deviation log(σ) and logit proportion parameter logit(ϕ) were, as designed, more

orthogonal (mean absolute correlation 0.17, Figure C.9).

The informativeness of data about a parameter can be summarised by the

posterior contraction (Schad et al. 2021) which compares the prior variance Vprior(ϕ)

to posterior variance Vpost(ϕ) via

c(ϕ) = 1 − Vprior

Vpost(ϕ) . (6.98)
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Figure 6.19: Under PCA, the proportion of total variation explained is given by the
sum of the first s eigenvalues over the sum of all eigenvalues. A typical rule-of-thumb
is to include dimensions sufficient to explain 90% of total variation. In this case, for
computational reasons, 87% was considered sufficient.

Posterior variances were extracted from NUTS results, and prior variances obtained

by simulating from a model with the likelihood component removed (Figure C.10).

The average posterior contraction was positive for all latent field parameter vectors,

and for the majority of hyperparameters (Figure C.11). However, for seven

hyperparameters the posterior contraction was very close to zero. Furthermore,

for some latent field parameter vectors, the average contraction was small. Based

on this findings, these parameters may not be identifiable.

6.5.2 Use of PCA-AGHQ

For the PCA-AGHQ quadrature grid, a Scree plot based on the spectral decom-

position of Ĥ−1
LA (as defined in Equation (6.42)) was used to select the number of

principal components to keep (Figure 6.19). Keeping s = 8 principal components

was sufficient to explain 87% of total variation. The reduced rank approximation

to the inverse curvature with this choice of s was visually similar to the full

rank matrix (Figure 6.20).

The principal component (PC) loadings (Figure 6.21) provide interpretable

information about which directions had the greatest variation. Many of the first
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Figure 6.20: The full rank original covariance matrix (Panel A) was closely reproduced
by its reduced rank (s = 8) matrix approximation (Panel B).

Figure 6.21: Each principal component loading, obtained by the eigendecomposition of
the inverse curvature, gives the direction of maximum variation conditional on inclusion
of each previous principal component loading. For example, the first principal component
loading is a sum of log_sigma_alpha_as and logit_phi_alpha_as.
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PC loadings are sums of two hyperparameters. As such, there is some redundancy

in the hyperparameter parameterisation, supporting the findings of Section 6.5.1

regarding correlation structure in the hyperparameter posterior. It is exactly this

correlation structure that PCA, and PCA-AGHQ, looks to utilise.

Projecting the 38 = 6561 PCA-AGHQ quadrature nodes onto each hyperpa-

rameter dimension, there was substantial variation in coverage by hyperparameter

(Figure 6.22). Approximately 12 hyperparameters had well covered marginals:

greater than the 8 naively obtained with a dense grid, but nonetheless far fewer than

the full 24. Coverage was higher among hyperparameters on the logistic scale, and

lower among hyperparameters on the logarithmic scale. This discrepancy occurred

due to logistic hyperparameters naturally having higher posterior marginal standard

deviation than logarithmic hyperparameters (Figure C.13).

6.5.3 Time taken

Inference with NUTS took 79 hours, while inference with GPCA-AGHQ took 1.2

hours and GEB just 0.9 minutes (Figure 6.23). Both the NUTS and GPCA-AGHQ

algorithms can be run under a range of settings, trading off accuracy and runtime.

6.5.4 Inference comparison

Posterior inferences from GEB, GPCA-AGHQ and NUTS were compared using

point estimates (Section 6.5.4.1) and distributional quantities (Section 6.5.4.2).

6.5.4.1 Point estimates

Latent field point estimates obtained from GPCA-AGHQ were closer to the

gold-standard results from NUTS than those obtained from GEB (Figure 6.24).

The root mean square error (RMSE) between posterior mean estimates from GPCA-

AGHQ and NUTS (0.063) was 20% lower than that between GEB and NUTS

(0.078). For the posterior standard deviation estimates, there was a substantial 60%

reduction in RMSE: from 0.14 (GEB) to 0.05 (GPCA-AGHQ). However, puzzlingly,
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logit_phi_rho_as logit_phi_rho_x logit_phi_rho_xs OmegaT_raw

logit_phi_alpha_as logit_phi_alpha_x logit_phi_alpha_xs logit_phi_rho_a

log_sigma_rho_x log_sigma_rho_xa log_sigma_rho_xs logit_phi_alpha_a

log_sigma_lambda_x log_sigma_or_gamma log_sigma_rho_a log_sigma_rho_as

log_sigma_alpha_xa log_sigma_alpha_xs log_sigma_ancalpha_x log_sigma_ancrho_x

log_betaT log_sigma_alpha_a log_sigma_alpha_as log_sigma_alpha_x

Figure 6.22: The grey histograms show the 24 hyperparameter marginal distributions
obtained with NUTS. The green lines indicate the position of the 6561 PCA-AGHQ
nodes projected onto each hyperparameter marginal. For some hyperparameters, the
PCA-AGHQ nodes vary over the domain of the posterior marginal distribution, while for
others they concentrate at the mode.
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Figure 6.23: The number of hours taken to perform inference for the Naomi ELGM
(Section 6.3.1) using each approach.

improvements in latent field estimate accuracy only transferred to model outputs

to a limited extent (Figures C.15 and C.16).

6.5.4.2 Distributional quantities

Kolmogorov-Smirnov The two-sample Kolmogorov-Smirnov (KS) test statistic

(Smirnov 1948) is the maximum absolute difference between two ECDFs F (ω) =
1
n

∑n
i=1 Iϕi≤ω. It is a relatively stringent, worst case, measure of distance between

empirical distributions. The average KS test statistic for GPCA-AGHQ (0.077)

was 8.6% less than the average KS test statistic for GEB (0.084).

For both GEB and GPCA-AGHQ the KS test statistic for a parameter was

correlated with low NUTS ESS (Figure C.17). This may be due to by difficulties

estimating particular parameters for all inference methods, or high KS values

caused by NUTS inaccuracies.

Maximum mean discrepancy Let Φ1 = {ϕ1
i }ni=1 and Φ2 = {ϕ2

i }ni=1 be two sets

of joint posterior samples, and k be a kernel. The maximum mean discrepancy

[MMD; Gretton et al. (2006)] is a measure of distance between joint distributions,
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Figure 6.24: The latent field posterior mean and posterior standard deviation point
estimates from each inference method as compared with those from NUTS. The root
mean square error (RMSE) and mean absolute error (MAE) are displayed in the top left.
For both the posterior mean and posterior standard deviation, GPCA-AGHQ reduced
RMSE and MAE as compared with GEB.

and can be estimated empirically by samples

MMD(Φ1,Φ2) =
√√√√ 1
n2

n∑
i,j=1

k(ϕ1
i ,ϕ

1
j) − 2

n2

n∑
i,j=1

k(ϕ1
i ,ϕ

2
j) + 1

n2

n∑
i,j=1

k(ϕ2
i ,ϕ

2
j).

(6.99)

The kernel was set to k(ϕ1,ϕ2) = exp(−σ∥ϕ1 − ϕ2∥2) with σ estimated from data

using the kernlab R package (Karatzoglou et al. 2019). The first and third order

MMD statistics for GEB were 0.08 and 0.0048. Those of GPCA-AGHQ (0.078

and 0.0044) were just 3% and 7% lower.
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Figure 6.25: The average Kolmogorov-Smirnov (KS) test statistic for each latent field
parameter of the Naomi model. Vectors of parameters were grouped together. For points
above the dashed line at zero, performance of GEB was better. For points below the
dashed line, performance of GPCA-AGHQ was better. Most notably, for the latent field
parameters ui_lambda_x the test statistic for GEB was substantially higher than for
GPCA-AGHQ. This parameter, of length 32, corresponds to uλx and plays a key role in
the ART attendance component of the Naomi (Section 6.3.1.4).

6.5.5 Exceedance probabilities

As a more realistic use case for the Naomi model outputs, consider the two following

case-studies based on exceedance probabilities.

6.5.5.1 Meeting the second 90

Ambitious targets for scaling up ART treatment have been developed by

UNAIDS, with the goal of ending the AIDS epidemic by 2030 (UNAIDS 2014).

Meeting the 90-90-90 fast-track target requires that 90% of people living with

HIV know their status, 90% of those are on ART, and 90% of those have a

suppressed viral load. Inferences from Naomi can be used to identify treatment
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Figure 6.26: The parameter ui_lambda_x[26] had the greatest difference in KS test
statistics between GEB and GPCA-AGHQ to NUTS. For this parameter, the potential
scale reduction factor was 1 and effective sample size was 2100.

gaps by calculating the probability that the second 90 target has been met, that

is P(αi > 0.92 = 0.81) for each strata i.

Strata probabilities of having met the second 90 target were more accurately

estimated by GPCA-AGHQ than GEB (Figure 6.27). Both GPCA-AGHQ and

GEB had substantial error as compared to results from NUTS, however, particularly

for girls and women. This discrepancy in accuracy by sex may be caused by

interactions between the household survey and ANC components of the model

creating a more challenging posterior geometry.

6.5.5.2 Finding strata with high incidence

Some HIV interventions are cost-effective only within high HIV incidence settings,

typically defined as higher than 1% incidence per year. Inferences from Naomi

can be used to calculate the probability of a strata having high incidence by

evaluating P(λi > 0.01).

GPCA-AGHQ gave more accurate estimates of the probability that a strata has
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Figure 6.27: The probability each strata has met the second 90 (ART coverage above
81%) calculated using each inference method, as compared with NUTS. The root mean
square error (RMSE) and mean absolute error (MAE) are displayed in the top left.

Figure 6.28: The probability each strata has high HIV incidence (above 1% per year)
calculated using each inference method, as compared with NUTS. The root mean square
error (RMSE) and mean absolute error (MAE) are displayed in the top left.

high HIV incidence than GEB (Figure 6.28). Again, both methods had significant

error. Unlike in Section 6.5.5.1, there was little difference in error by sex.

6.6 Discussion

This chapter made two main contributions. First, the universal INLA implementa-

tion of Section 6.2. Second, the PCA-AGHQ rule (Sections 6.4). Both were applied
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to the Naomi model in Malawi in Section 6.5. These contributions are discussed

in turn, before outlining suggestions for future work.

6.6.1 A universal INLA implementation

Monnahan and Kristensen (2018) write that “to our knowledge, TMB is the only

software platform capable of toggling between integration tools [the Laplace approx-

imation and NUTS] so effortlessly”. Section 6.2 made important progress towards

adding INLA to the integration tools easily accessible using TMB. Reaching this mile-

stone would be of significant value to both applied and methodological researchers.

The implementation is not intended to replace R-INLA, and indeed for the

majority of users a formula-based interface is preferred. Both formula-based and

universal statistical tools have value, as they inhabit different use-cases. For the

NUTS algorithm, a universal interface is available via Stan, and packages such as

brms (Bürkner 2017) and rstanarm (Goodrich et al. 2020) enable researchers to fit

common models using a formula interface. Furthermore, developers of formula-based

tools do have incentives to engage with the needs of their users, and indeed do

so. For example, after requesting for the generalised binomial distribution used in

Equation (6.81) to be included in R-INLA, a prototype version was shortly made

available. That said, it is ultimately more sustainable for advanced users to have

capacity to implement their own distributions and models.

6.6.2 PCA-AGHQ with application to INLA for Naomi

For the simplified Naomi model applied to data from Malawi, GPCA-AGHQ more

accurately inferred latent field posterior marginal distributions than GEB. However,

model output posterior marginals did not see the same improvements. Approximate

posterior exceedance probabilities from both GEB and GPCA-AGHQ had systematic

inaccuracies as compared with NUTS. GEB and GPCA-AGHQ were substantially

faster than NUTS, which took over two days to reach convergence.

Inaccuracies in model outputs from GEB and GPCA-AGHQ do have potential

to meaningfully mislead policy (Sections 6.5.5.1 and 6.5.5.2). As such, where
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possible, gold-standard NUTS results should be computed. Though NUTS is too

slow to run during a workshop, it could be run afterwards. As the UNAIDS

HIV estimates process occurs annually, requiring days to compute more accurate

estimates is viable. That said, Malawi is one of the countries with the fewest

number of districts. As NUTS took days to run in Malawi, for larger countries,

with hundreds of districts, it may be impossible to run NUTS to convergence,

and approximate methods may be required.

To empower users, GPCA-AGHQ and NUTS could be added to the Naomi web

interface (https://naomi.unaids.org) as alternatives to GEB. Analysts would be

able to quickly iterate over model options using EB, before switching to a more

accurate approach once they are happy with the results.

PCA-AGHQ can be adjusted to suit the computational budget available by

choice of the number of dimensions kept in the PCA s and the number of points

per dimension k. The scree plot is a well established heuristic for choosing s.

Heuristics for choosing k are less well established. Whether it is preferable for

a given computational budget to increase s or increase k is an open question.

Further strategies, such as gradually lowering k over the principal components,

could also be considered.

6.6.3 Suggestions for future work

Finally, this section presents suggestions for future work based on this chapter.

Some suggestions relate more to individual contributions, others take a broader

view, or relate to multiple contributions.

6.6.3.1 Further comparisons

Comparison to further Bayesian inference methods could be included in Section

6.5. Four possibilities stand out as being particularly valuable:

1. There exist other quadrature rules for moderate dimension, such as the CCD.

It would be of interest to compare INLA with a PCA-AGHQ rule to INLA

with other such quadrature rules.
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2. Rather than use quadrature to integrate the marginal Laplace approximation,

an alternative approach is to run HMC (Monnahan and Kristensen 2018;

C. Margossian et al. 2020). When run to convergence, inferential error of

this method would solely be due to the Laplace approximation, helping to

clarify the extent to which the inferential error of INLA is attributable to

the quadrature grid. Preliminary testing of this approach, using tmbstan and

setting laplace = TRUE, did not show immediate success but likely could be

worked on.

3. NUTS is not especially well suited to sampling from Gaussian latent field

models like Naomi. Other MCMC algorithms, such as blocked Gibbs sampling

(S. Geman and D. Geman 1984) or slice sampling (Neal 2003), could be

considered. It may be difficult to implement such algorithms using TMB. Many

MCMC algorithms are implemented and customisable (including, for example,

the choice of block structure) within the NIMBLE probabilistic programming

language (de Valpine et al. 2017). Requiring rewriting the Naomi model

log-posterior outside of TMB would be a substantial downside.

4. Finally, it would be of substantial interest to implement the Naomi model

using the iterative INLA method via inlabru. However, as inlabru, like

R-INLA, is based on a formula interface, it may not be possible to do so

directly.

6.6.3.2 Better quadrature grids

PCA-AGHQ is a sensible approach to allocating more computational effort

to dimensions which contribute more to the integral in question. However, its

application to Naomi surfaced instances where it overlooked potential benefits, or

otherwise did not behave as one might wish:

1. The amount of variation explained in the Hessian matrix may not be of direct

interest. For the Naomi model, interest is in the effect of including each

dimension on the relevant model outputs. As such, using alternative measures
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of importance from sensitivity analysis, such as Shapley values (Shapley et al.

1953) or Sobol indices, could be preferable.

2. Use of PCA is challenging when the dimensions have different scales. For the

Naomi model, logit-scale hyperparameters were systematically favoured over

those on the log-scale.

3. When the quadrature rule is used within an INLA algorithm, it is more

important to allocate quadrature nodes to those hyperparameter marginals

which are non-Gaussian. This is because the Laplace approximation is exact

when the integrand is Gaussian, so a single quadrature node is sufficient.

The difficulty is, of course, knowing in advance which marginals will be non-

Gaussian. This could be done if there were a cheap way to obtain posterior

means, which could then be compared to posterior modes obtained using

optimisation. Another approach would be to measure the fit of marginal

samples from a cheap approximation, like EB. The measures of fit would have

to be for marginals, ruling out approaches like PSIS (Yao et al. 2018) which

operate on joint distributions.

4. Finally, it may be possible to achieve better performance by pruning and

prerotation, as discussed by Jäckel (2005).

6.6.3.3 Computational improvements

1. Approximation: The most significant improvement likely could come by using

approximations to the Laplace marginals. In particular, he simplified Laplace

marginals of Wood (2020) (Section 6.1.3.4) should be implemented, as the

ELGM setting has relatively dense precision matrices.

2. Parallelisation: Integration over a moderate number of hyperparameters

resulted in use of quadrature grids with a large number of nodes. Computation

at each node is independent, so algorithm run-time could potentially be

significantly improved using parallel computing. This point is discussed by

Kristensen et al. (2016) who highlight that TMB could applied to perform

function evaluations in parallel, for example using the parallel R package.
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3. Hardware: Further computational speed-ups might be obtained using graphics

processing units (GPUs) specialised for the relevant matrix operations.

6.6.3.4 Statistical theory

The class of functions which are integrated exactly by PCA-AGHQ remains

to be shown. Theorem 1 of Stringer et al. (2022) bounds the total variation

error of AGHQ, establishing convergence in probability of coverage probabilities

under the approximate posterior distribution to those under the true posterior

distribution. Similar theory could be established for PCA-AGHQ, or more generally

AGHQ with varying levels. The challenge of connecting this theory to nested use

of any quadrature rule, like that in the INLA algorithm, remains an important

open question.

6.6.3.5 Testing quadrature assumptions

It may be possible to test the assumptions made by use of AGHQ grids, allowing

their suitability for a particular integral to be assessed. Specifically, AGHQ assumes

that the integrand is closely approximated by a polynomial multiplied by a Gaussian

density. Given NUTS hyperparameter samples (or better yet, hyperparameter

samples from the Laplace NUTS hybrid discussed in Section 6.6.3.1) this assumption

could be tested by fitting a model using a polynomial times Gaussian kernel. This

approach could be generalised to also test the suitability of PCA-AGHQ grids.

6.6.3.6 Exploration of the accuracy of INLA for complex models

The universal INLA implementation can be used to measure the accuracy of INLA

for a wider range of models than were previously possible. An important benefit of

using TMB is that comparisons to NUTS can easily be made using exactly the same

model template. Among the ELGM-type structures of particular interest for spatial

epidemiology are aggregated likelihood models and evidence synthesis models.
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Figure 6.29: Monthly R package downloads from the Comprehensive R Archive Network
(CRAN) for brms, glmmTMB, nimble, rstan and TMB, obtained using the cranlogs (Csárdi
2023) R package. Unfortunately, R-INLA is not available from CRAN, and so could not
be included in this figure. The official rstan documentation recommends installation of a
development version hosted outside CRAN. As such, this metric may underestimate the
popularity of rstan.

6.6.3.7 Methods dissemination

The approach used to implement Laplace marginals with TMB was relatively

ad-hoc, and involved modification of the TMB C++ template (Section 6.2.1.4). For

wider dissemination of this method, it is important that the user is not burdened

with making these modifications. One possibility would be to change the random

argument in TMB::MakeADFun to allow for indexing. Another (less desirable) option

would be to algorithmically generate the modified TMB C++ template based on

the original template.

Though gaining in popularity, the user-base of TMB is relatively small, and

package downloads are in large part driven by use of the more easy-to-use glmmTMB

package (Figure 6.29). For users unfamiliar with C++, it can be challenging

to use TMB directly. One possibility is to look to disseminate methods via the

users of glmmTMB. Another approach would be to implement methods in other

probabilistic programming languages, such as Stan or NIMBLE. Implementation in

Stan is made possible by the bridgestan package (Ward 2023), which provides

access to the methods of a Stan model, and could be combined with the prototyping
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of an adjoint-differentiated Laplace approximation done in Stan by C. Margossian

et al. (2020). The ratio of downloads of rstan as compared with brms suggests

a larger proportion of Stan users are interested in specifying their own model.

Implementation in NIMBLE is also possible as of version >1.0.0 which includes

functionality for automatic differentiation and Laplace approximation [Part V; de

Valpine et al. (2023)] like TMB built using CppAD. Both NIMBLE and Stan developers

are actively looking into implementation of algorithms combining the Laplace

approximation and quadrature.
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Conclusions

This chapter concludes the thesis by discussing its most important contributions,

some promising avenues for future work, and broader reflections about the work.

7.1 Contributions

Effective response to the HIV epidemic depends on strategic information provided

by models of data. This thesis contributes both to generating this information

and to advancing statistical methods.

Chapter 4 found that spatially structured random effects should be used in

small-area models for HIV. Kernel models performed better for data simulated

from an adjacency-based spatial process than adjacency-based models did for data

simulated from a kernel model. However, adjacency-based models performed better

under cross-validation of real HIV survey data. Model comparison was conducted

using strictly proper scoring rules, with checks for calibration.

Chapter 5 estimated HIV risk group proportions for AGYW to enable imple-

mentation of the Global AIDS strategy (UNAIDS 2021b). Risk group proportion

estimates were used to behaviourally disaggregate HIV prevalence and incidence

and assess the benefits of a variety of risk stratification strategies. This work

is the basis for a tool used to prioritise delivery of HIV prevention services by
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Figure 7.1: Panel A shows the front page of UNAIDS (2023b). Panel B shows the page
containing text and a figure based on the work done in Chapter 5. In this figure, 30
countries are included.

countries in SSA. The tool now encompasses at least 30 countries, expanding from

the initial 13 included [Figure 7.1; UNAIDS (2023b)]. Models will be rerun each

year to populate the tool with updated information as a part of the UNAIDS

annual HIV estimates process. Alongside these applied contributions, Chapter 5

exemplified specification of complex multinomial spatio-temporal models in R-INLA

using the Poisson-multinomial transformation, including using two- and three-way

Kronecker product interactions.

The Naomi model has been used in over 35 countries in SSA to produce district-

level estimates of HIV indicators by synthesising evidence from multiple sources.

Chapter 6 developed deterministic Bayesian inference methods, motivated by the aim

of providing more accurate inferences for this challenging and practically important

model. Its most important methodological contributions are two-fold. First, an

implementation of INLA which is compatible with models specified using a TMB C++

template. For the first time, practitioners can now fit essentially any model using
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the INLA method. Second, a quadrature rule which combines PCA and AGHQ to

naturally extend the applicability of INLA methods to moderate hyperparameter

dimension, allowing more complex models to be fit. Additionally, Chapter 6 provides

detailed description and analysis of the Naomi model. Indeed, Esra et al. (2024)

used tables and text from Appendix C in an update to Jeffrey W Eaton et al. (2021).

7.2 Future work

Promising avenues for future work, that I might prioritise, include:

1. It would be valuable to extend the risk group model developed in Chapter

5, and the resulting tool, to include all adults 15-49. Although AGYW are

disproportionately at risk of HIV infection, 56% of new infections in SSA occur

in other demographic groups. Modelling of age-stratified sexual partnerships

(Wolock et al. 2021) may help to overcome reporting biases by harmonising

male and female reporting. This model would likely fall outside the scope of

R-INLA, but would be possible to write with TMB and therefore amenable to

the inference methods advanced in Chapter 6.

2. Although suitable for early stage research, wider adoption of the INLA imple-

mentation developed in Chapter 6 would be greatly enhanced by improvements

to its speed and usability. The most important speed enhancement would come

from using the simplified approximation to the Laplace marginals developed by

Wood (2020). Although the naive implementation used in this thesis is viable

for integrating Laplace marginals over a small number of hyperparameter

quadrature nodes, such as the 32 = 9 nodes used Sections 6.2.2 and 6.2.1, it

becomes prohibitively slow for larger numbers. Usability would be improved

by providing the method as a part of statistical software, likely via the aghq

package. The primary difficulty which would have to be overcome to do so is

that the random argument of TMB::MakeADFun does not allow indexing.
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Figure 7.2: For the Loa loa ELGM (Section 6.2.2), increasing the number of quadrature
nodes per hyperparameter dimension from k = 3 to k = 7 did little to improve accuracy.
On the other hand, using Laplace marginals rather than Gaussian marginals did have
a substantial effect (Figures 6.12 and 6.13). It would be valuable to better understand,
and aspirationally have diagnostics for, the circumstances under which accuracy of INLA
methods could be improved by additional computation.

3. The universal INLA implementation developed in Chapter 6 enables empirical

and methodological research that was previously not possible, or prohibitively

difficult.

INLA-like methods can now be tested for a broader class of models, such

as the Loa loa and Naomi ELGMs (Sections 6.2.2 and 6.5). That a single

TMB C++ template for the log-posterior supports inference using multiple

methods, including gold-standard NUTS via tmbstan, is a substantial asset

in conducting this type of research.

As an example research question, within this class of models, what is the best

way to obtain accurate inferences within a fixed computational budget. Is it

better to use additional hyperparameter grid points, or more accurate latent

field approximations? For the Loa loa ELGM in Section 6.2.2, the benefit of

using Laplace marginals exceeded that of a denser AGHQ grid (Figure 7.2).
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It would also be of interest to find methods to obtain accurate inferences for

particular parameters, or functions of parameters, using INLA-like methods.

For example, in Section 6.5, although the PCA-AGHQ grid improved latent

field parameter inferences, it did little to improve model output accuracy.

Is there a way in which computational effort could be focused on obtaining

accurate estimates of Naomi model outputs?

Additionally, it is relatively easy to make alterations to the implementation,

facilitating possible innovation in the design of INLA-like algorithms. Pre-

viously, it has been difficult for researchers not involved in development of

R-INLA to engage in methodological work about the INLA method.

Theoretical research could be conducted to complement the work described

above, extending the findings of Bilodeau et al. (2022). This work is benefited

by the complete specification (Appendix C.3) of the INLA-like algorithm used

in this thesis.

7.3 Broader reflections

Conducting the work in this thesis involved testing the boundaries of available

statistical software. For example, I found it challenging, if not impossible, to

implement a common model using different inferential software. As the Frequently

Asked Questions section of the R-INLA website (Havard Rue 2023) notes: “the

devil is in the details”. Similarly, I encountered issues implementing a desired

collection of different models in a common inferential software. From personal

experience, my colleagues have also encountered similar problems. Needless to

say, conflation of statistical models and inference methodologies limits the validity

of any findings. To avoid this issue I implemented all models in Chapters 4 and

6 using TMB model templates. (Additionally, I would recommend implementing

the model used in Chapter 5 in TMB for future development.) Alongside being

sufficiently flexible to meet my model specification requirements, TMB is compatible

with a range of inference methodologies, including those advanced in this thesis.
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As such, TMB remains (Osgood-Zimmerman and Jon Wakefield 2023) an under-

rated statistical tool. In demonstrating some of its capabilities, I hope this thesis

contributes to its wider adoption.

The work done in this thesis, particularly Chapters 4 and 6, focused on producing

experimental, empirical evidence. This approach reflects the complexity of the

models and methods used in this thesis. Understanding complex systems from a

theoretical perspective can be challenging. That said, in my opinion the work in

this thesis could benefit from closer integration with statistical theory. Although

a full theoretical understanding of these models or algorithms may be ambitious,

better understanding simplified examples, limiting cases, or constituent parts could

still prove valuable.

Working with the data in Chapter 5 deepened my appreciation for the realistic

challenges faced in applied work, and data quality being linchpin for any successful

statistical analysis. While from the real world, the data in Chapters 4 and 6

underwent substantial cleaning, processing, and vetting before I handled them,

as is typical in methodological research. It is important that methodological and

theoretical statisticians appreciate the real challenges of applied work, by doing

it themselves, or working in close collaboration with those who do.

There are both direct and indirect paths to impact for the work in this thesis.

Directly, the methodological contributions of Chapters 4 and 6 may eventually

lead to marginally more accurate indicator estimates, contributing to a broadly

more effective response. However, these improvements in accuracy seem of minor

consequence within the broader context of the HIV response, and factors limiting

its effectiveness. The applied contributions of Chapter 5 have a more promising

case for direct impact. Indeed, I have seen evidence of engagement with this

work by decision makers.

To the best of my abilities, this thesis, and the work described within it, was

written in keeping with the principles of open science. I hope that having done so

facilitates my work to be scrutinised, and more optimistically, built upon. In part this

hope has already been realised, as with limited input from me, Dr. Kathryn Risher
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was able to extend my code for Chapter 5 to include additional countries (Panel

7.1B). This would not have been possible without tools from the R ecosystem such as

rmarkdown and rticles for reporting, devtools for R package development, as well

as those written by software engineers within the MRC Centre for Global Infectious

Disease Analysis such as orderly and didehpc. It is crucial that academia adjusts

to appropriately incentivises software contributions, and encourages adaption of

open science best practices. Work done to inform public health decision making

should be held to high standards of transparency, reproducibility and collaboration.

Especially so in an outbreak response scenario (Grieve et al. 2023), where time

is limited and decisions may be of significant consequence.
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A
Models for areal spatial structure

A.1 Comparison of AGHQ to NUTS
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Figure A.1: A comparison of time taken to fit AGHQ via aghq as compared with NUTS
via tmbstan for each inferential model. For the models run using NUTS via tmbstan
there was significant variation in time taken depending on initial random seed. As such,
these timings and more broadly the inferences obtained from NUTS in Appendix A.1
should be interpreted with appropriate skepticism.

Figure A.2: A comparison of the posterior means and standard deviations obtained
with AGHQ via aghq as compared with NUTS via tmbstan fitting an IID inferential
model to IID synthetic data on the grid geometry (Panel 4.6E). For NUTS, the minimum
ESS was 1686, and the maximum value of the potential scale reduction factor was 1.00.
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Figure A.3: A comparison of the posterior means and standard deviations obtained
with AGHQ via aghq as compared with NUTS via tmbstan fitting a Besag inferential
model to IID synthetic data on the grid geometry (Panel 4.6E). For NUTS, the minimum
ESS was 1056, and the maximum value of the potential scale reduction factor was 1.00.

Figure A.4: A comparison of the posterior means and standard deviations obtained
with AGHQ via aghq as compared with NUTS via tmbstan fitting a BYM2 inferential
model to IID synthetic data on the grid geometry (Panel 4.6E). For NUTS, the minimum
ESS was 35, and the maximum value of the potential scale reduction factor was 1.06.
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Figure A.5: A comparison of the posterior means and standard deviations obtained
with AGHQ via aghq as compared with NUTS via tmbstan fitting a FCK inferential
model to IID synthetic data on the grid geometry (Panel 4.6E). For NUTS, the minimum
ESS was 355, and the maximum value of the potential scale reduction factor was 1.01.

Figure A.6: A comparison of the posterior means and standard deviations obtained
with AGHQ via aghq as compared with NUTS via tmbstan fitting a CK inferential model
to IID synthetic data on the grid geometry (Panel 4.6E). For NUTS, the minimum ESS
was 1471, and the maximum value of the potential scale reduction factor was 1.00.
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Figure A.7: A comparison of the posterior means and standard deviations obtained with
AGHQ via aghq as compared with NUTS via tmbstan fitting a FIK inferential model to
IID synthetic data on the grid geometry (Panel 4.6E). For NUTS, the minimum ESS was
289, and the maximum value of the potential scale reduction factor was 1.01.

Figure A.8: A comparison of the posterior means and standard deviations obtained
with AGHQ via aghq as compared with NUTS via tmbstan fitting a IK inferential model
to IID synthetic data on the grid geometry (Panel 4.6E). For NUTS, the minimum ESS
was 1623, and the maximum value of the potential scale reduction factor was 1.00.
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Figure A.9: The probability density for each lengthscale prior distribution as given in
Table A.1.

A.2 Lengthscale prior sensitivity

Table A.1: Six lengthscale prior distributions were considered for use in the simulation
(Section 4.3) and HIV prevalence (Section 4.4) studies.

Description Prior Additional details
Gamma l ∼

Gamma(1, 1)
−

Geometry-
informed
inverse-gamma

l ∼ IG(a, b) The parameters a and b chosen such that 5%
of the prior mass was below and above the
5% and 95% quantile for distance between
points (Betancourt 2017)

Geometry-
informed normal

l ∼ N +(0, σ) The parameter σ set as one third the
difference between the minimum and
maximum distance between points
(Betancourt 2017)

Log-normal l ∼
Log-normal(0, 1)

−

Non-informative p(l) = 1 This is an improper prior in that it does not
integrate to one

Oracle normal l ∼ N +(2.5, 1) The mean of this prior was set to the true
value of the lengthscale

186



A. Models for areal spatial structure

Figure A.10: Lengthscale posterior distributions obtained using NUTS to fit a centroid
kernel model to integrated kernel data. The true value, 2.5, is shown as a dashed vertical
line. Six different lengthscale prior distributions were considered as given in Table A.1.
The geometry used was the grid (Panel 4.6E).

A.3 Simulation study

A.3.1 Lengthscale recovery

A.3.2 BYM2 proportion

A.3.3 Mean squared error

Table A.2: The average mean squared error (MSE) of each inferential model in estimating
ρ, under different simulation and geometry settings. Entries for FCK and CK on geometry
2 are empty because model was undefined in that case. The units used in this table are
expressed in thousandths.

Inferential model
Simulation model IID Besag BYM2 FCK CK FIK IK
1
IID 8.20 7.56 7.99 7.84 7.67 7.90 7.61
Besag 7.31 6.39 7.15 7.31 6.76 7.27 6.63
IK 7.44 6.30 7.27 7.74 6.83 7.58 6.62
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2
IID 8.43 7.62 8.23 - - 7.99 8.32
Besag 7.56 6.58 7.39 - - 7.25 6.42
IK 7.16 5.91 6.95 - - 6.91 4.95
3
IID 8.23 7.72 8.19 8.09 7.85 8.05 7.75
Besag 7.73 6.71 7.63 7.78 7.01 7.55 6.67
IK 7.56 6.24 7.30 7.75 6.78 7.53 6.18
4
IID 8.71 8.03 8.49 8.53 8.31 8.35 8.12
Besag 7.48 6.65 7.34 7.55 7.08 7.44 6.89
IK 7.38 6.11 7.12 7.60 6.71 7.45 6.36
Grid
IID 7.63 7.65 7.66 7.72 7.79 7.89 7.84
Besag 4.06 3.29 3.77 3.94 3.36 3.71 3.32
IK 5.97 4.30 4.81 4.98 3.50 4.47 3.41
Cote d’Ivoire
IID 7.72 7.78 7.74 7.89 7.99 8.08 7.96
Besag 4.88 3.96 4.45 4.62 4.07 4.36 4.00
IK 5.61 3.96 4.50 4.73 3.18 4.19 3.10
Texas
IID 7.63 7.71 7.65 8.59 8.05 8.60 7.80
Besag 5.13 4.05 4.62 4.60 4.36 4.34 4.26
IK 6.29 4.51 5.06 4.44 3.45 4.04 3.37

A.3.4 Continuous ranked probability score

Table A.3: The average continuous ranked probability score (CRPS) of each inferential
model in estimating ρ, under different simulation and geometry settings. Entries for FCK
and CK on geometry 2 are empty because model was undefined in that case. The units
used in this table are thousandths.

Inferential model
Simulation model IID Besag BYM2 FCK CK FIK IK
1
IID 32.6 33.9 32.7 32.1 33.4 32.3 33.5
Besag 30.7 29.5 30.6 30.7 30.0 30.7 29.9
IK 31.2 29.1 31.1 32.1 30.1 31.7 29.7
2
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IID 33.1 33.4 32.8 - - 32.7 39.9
Besag 32.0 30.6 31.6 - - 31.2 33.2
IK 28.9 26.2 28.6 - - 28.4 24.2
3
IID 32.9 33.8 33.1 32.4 33.5 32.6 35.0
Besag 32.9 31.1 32.4 33.0 31.5 32.2 31.6
IK 30.7 28.1 30.3 31.4 29.0 30.8 27.9
4
IID 34.3 34.9 34.2 34.2 34.8 33.8 34.7
Besag 32.3 31.2 31.9 32.1 31.8 31.9 31.7
IK 29.8 27.3 29.3 30.5 28.3 29.9 27.7
Grid
IID 32.4 34.2 32.5 33.1 34.0 35.1 35.1
Besag 24.6 22.7 23.3 23.4 23.8 23.5 24.1
IK 28.7 23.7 24.6 24.4 21.1 23.1 21.0
Cote d’Ivoire
IID 32.4 34.5 32.5 33.7 34.8 35.8 35.6
Besag 26.5 24.4 24.9 25.3 25.9 25.3 26.0
IK 27.7 22.2 23.4 23.6 19.6 22.2 19.6
Texas
IID 32.1 34.0 32.3 39.2 35.7 40.0 35.6
Besag 27.3 24.7 25.3 27.1 27.5 26.9 27.0
IK 29.7 24.5 25.4 23.0 20.8 22.3 20.9

A.3.5 Calibration

A.4 HIV study

A.4.1 Lengthscale

A.4.2 BYM2 proportion

A.4.3 Estimates

A.4.4 Cross-validation

A.4.4.1 Mean squared error
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Figure A.11: The lengthscale posterior mean and 95% credible interval obtained using
the centroid kernel model on integrated kernel data for the first 40 simulation replicates
on each geometry. The true lengthscale, and lengthscale obtained using the heuristic
method of Best et al. (1999), are shown as dashed horizontal lines.

Table A.4: The mean pointwise leave-one-out and spatial leave-one-out MSE in
estimating ρi, with standard errors, for each inferential model across the four considered
PHIA surveys. The units used in this table are thousandths.

Mean squared error (units: 1/1000)
PHIA survey IID Besag BYM2 FCK CK FIK IK
LOO
Côte d’Ivoire, 2017 0.21 0.22 0.20 0.21 0.19 0.21 0.20
Malawi, 2016 7.10 2.39 2.59 3.59 3.70 2.43 2.54
Tanzania, 2017 1.66 1.14 1.43 0.95 0.65 0.78 0.66
Zimbabwe, 2016 4.76 2.51 2.54 2.51 1.88 2.15 1.83
SLOO
Côte d’Ivoire, 2017 0.20 0.22 0.21 0.24 0.25 0.26 0.25
Malawi, 2016 7.13 2.41 3.32 8.22 7.95 7.05 6.70
Tanzania, 2017 1.65 1.09 2.46 1.86 2.80 1.86 2.59
Zimbabwe, 2016 4.73 2.49 3.44 3.95 3.36 3.93 3.42

A.4.4.2 Continuous ranked probability score
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Figure A.12: The BYM2 proportion parameter posterior mean and 95% credible interval
obtained for the first 40 simulation replicates for the realistic geometries. When the
simulated data is IID, the BYM2 proportion parameter is in the majority of cases below
0.5, corresponding to have inferred that the noise is mostly IID (spatially unstructured)
When the simulated data is either Besag or IK, the BYM2 proportion parameter is in the
majority of cases above 0.5, corresponding to have inferred that the noise is mostly Besag
(spatially structured).
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Figure A.13: The mean CRPS with 95% credible interval in estimating ρ using each
inferential model and simulation model on the first vignette geometry (Panel 4.6A).
Credible intervals were generated using 1.96 times the standard error.
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Figure A.14: The mean CRPS with 95% credible interval in estimating ρ using each
inferential model and simulation model on the second vignette geometry (Panel 4.6B).
Credible intervals were generated using 1.96 times the standard error.
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Figure A.15: The mean CRPS with 95% credible interval in estimating ρ using each
inferential model and simulation model on third vignette geometry (Panel 4.6C). Credible
intervals were generated using 1.96 times the standard error.
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Figure A.16: The mean CRPS with 95% credible interval in estimating ρ using each
inferential model and simulation model on the fourth vignette geometry (Panel 4.6D).
Credible intervals were generated using 1.96 times the standard error.
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Figure A.17: Choropleths showing the mean value of the CRPS in estimating ρ, under
each inferential model and simulation model, at each area of the first vignette geometry
(Panel 4.6A).
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Figure A.18: Choropleths showing the mean value of the CRPS in estimating ρ, under
each inferential model and simulation model, at each area of the second vignette geometry
(Panel 4.6B).
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Figure A.19: Choropleths showing the mean value of the CRPS in estimating ρ, under
each inferential model and simulation model, at each area of the third vignette geometry
(Panel 4.6C).
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Figure A.20: Choropleths showing the mean value of the CRPS in estimating ρ, under
each inferential model and simulation model, at each area of the fourth vignette geometry
(Panel 4.6D).
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Figure A.21: Choropleths showing the mean value of the CRPS in estimating ρ, under
each inferential model and simulation model, at each area of the grid geometry (Panel
4.6E).
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Figure A.22: Choropleths showing the mean value of the CRPS in estimating ρ, under
each inferential model and simulation model, at each area of the Côte d’Ivoire geometry
(Panel 4.6F).

201



A. Models for areal spatial structure

Figure A.23: Choropleths showing the mean value of the CRPS in estimating ρ, under
each inferential model and simulation model, at each area of the Texas geometry (Panel
4.6G).
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Figure A.24: Probability integral transform histograms and empirical cumulative
distribution function difference plots for ρ, under each inferential model and simulation
model, for the first vignette geometry (Panel 4.6A).
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Figure A.25: Probability integral transform histograms and empirical cumulative
distribution function difference plots for ρ, under each inferential model and simulation
model, for the second vignette geometry (Panel 4.6B).
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Figure A.26: Probability integral transform histograms and empirical cumulative
distribution function difference plots for ρ, under each inferential model and simulation
model, for the third vignette geometry (Panel 4.6C).
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Figure A.27: Probability integral transform histograms and empirical cumulative
distribution function difference plots for ρ, under each inferential model and simulation
model, for the fourth vignette geometry (Panel 4.6D).
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Figure A.28: Probability integral transform histograms and empirical cumulative
distribution function difference plots for ρ, under each inferential model and simulation
model, for the grid geometry (Panel 4.6E).
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Figure A.29: Probability integral transform histograms and empirical cumulative
distribution function difference plots for ρ, under each inferential model and simulation
model, for the Côte d’Ivoire geometry (Panel 4.6F).

208



A. Models for areal spatial structure

Figure A.30: Probability integral transform histograms and empirical cumulative
distribution function difference plots for ρ, under each inferential model and simulation
model, for the Texas geometry (Panel 4.6G).
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Figure A.31: The lengthscale hyperparameter prior and posterior distributions for each
of the four considered PHIA surveys (Table 4.3), using both the CK and IK inferential
models.
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Figure A.32: The BYM2 proportion hyperparameter prior and posterior distributions
for each of the four considered PHIA surveys (Table 4.3). A value of zero corresponds to
IID noise. A value of one corresponds to Besag noise. For each survey, excluding the Côte
d’Ivoire 2017 PHIA, the posterior distribution for the BYM2 proportion is concentrated
towards a value of one. This result can be interpreted as suggesting that the variation in
HIV prevalence from these surveys is spatially structured.
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Figure A.33: The HIV prevalence posterior mean and 95% credible interval for each
area of Côte d’Ivoire, based on the 2017 PHIA survey. Direct estimates obtained from
the survey are as shown in Panel 4.10A.
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Figure A.34: The HIV prevalence posterior mean and 95% credible interval for each
area of Malawi, based on the 2016 PHIA survey. Direct estimates obtained from the
survey are as shown in Panel 4.10B.
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Figure A.35: The HIV prevalence posterior mean and 95% credible interval for each
area of Tanzania, based on the 2017 PHIA survey. Direct estimates obtained from the
survey are as shown in Panel 4.10C.
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Figure A.36: The HIV prevalence posterior mean and 95% credible interval for each
area of Zimbabwe, based on the 2016 PHIA survey. Direct estimates obtained from the
survey are as shown in Panel 4.10D.
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Figure A.37: The pointwise CRPS in estimating ρi using either leave-one-out or spatial
leave-one-out cross-validation, with mean and 95% credible interval for the Côte d’Ivoire
2017 PHIA survey (Panel 4.10A).
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Figure A.38: The pointwise CRPS in estimating ρi using either leave-one-out or spatial
leave-one-out cross-validation, with mean and 95% credible interval, for the Malawi 2016
PHIA survey 4.10B.
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Figure A.39: The pointwise CRPS in estimating ρi using either leave-one-out or spatial
leave-one-out cross-validation, with mean and 95% credible interval, for the Tanzania
2017 PHIA survey 4.10C.
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Figure A.40: The pointwise CRPS in estimating ρi using either leave-one-out or spatial
leave-one-out cross-validation, with mean and 95% credible interval, for the Zimbabwe
2016 PHIA survey 4.10D.
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Figure A.41: Choropleth showing the pointwise CRPS in estimating ρi using either
leave-one-out or spatial leave-one-out cross-validation for the Côte d’Ivoire 2017 PHIA
survey (Panel 4.10A).

Figure A.42: Choropleth showing the pointwise CRPS in estimating ρi using either
leave-one-out or spatial leave-one-out cross-validation for the Malawi 2016 PHIA survey
(Panel 4.10B).
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Figure A.43: Choropleth showing the pointwise CRPS in estimating ρi using either
leave-one-out or spatial leave-one-out cross-validation for the Tanzania 2017 PHIA survey
(Panel 4.10C).

Figure A.44: Choropleth showing the pointwise CRPS in estimating ρi using either
leave-one-out or spatial leave-one-out cross-validation for the Zimbabwe 2016 PHIA survey
(Panel 4.10D).

221



A. Models for areal spatial structure

Figure A.45: Probability integral transform histograms and empirical cumulative
distribution function difference plots in estimating ρ for the Côte d’Ivoire 2017 PHIA
survey (Panel 4.10A).
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Figure A.46: Probability integral transform histograms and empirical cumulative
distribution function difference plots in estimating ρ for the Malawi 2016 PHIA survey
(Panel 4.10B).
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Figure A.47: Probability integral transform histograms and empirical cumulative
distribution function difference plots in estimating ρ for the Tanzania 2017 PHIA survey
(Panel 4.10C).
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Figure A.48: Probability integral transform histograms and empirical cumulative
distribution function difference plots in estimating ρ for the Zimbabwe 2016 PHIA survey
(Panel 4.10D).
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A model for risk group proportions

B.1 The Global AIDS Strategy

Table B.1: Prioritisation strata for AGYW given by UNAIDS (2021b) based on to HIV
incidence in the general population and behavioural risk.

Prioritisation
strata Criterion
Low 0.3-1.0% incidence and low-risk behaviour, or <0.3% incidence

and high-risk behaviour
Moderate 1.0-3.0% incidence and low-risk behaviour, or 0.3-1.0% incidence

and high-risk behaviour
High 1.0-3.0% incidence and high-risk behaviour
Very high >3.0% incidence

Table B.2: Commitments recommended by UNAIDS (2021b) to be met for each HIV
intervention, given in terms of the proportion of the AGYW prioritisation strata reached.
The symbol “-” represents no commitment.

Intervention Low Moderate High
Very
High

Condoms and lube for those with non-regular
partners(s), unknown STI status, not on PrEP

50% 70% 95% 95%

STI screening and treatment 10% 10% 80% 80%
Access to PEP - - 50% 90%
PrEP use - 5% 50% 50%
Economic empowerment - - 20% 20%
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Intervention Low Moderate High
Very
High

B.2 Household survey data

Table B.3: The sample size by age group for each included survey in the analysis. The
column “TS question” refers to whether or not the survey included a specific question
about transactional sex (TS).

Sample size
Type Year TS question 15-19 20-24 25-29 Total

Botswana
BAIS 2013 Yes 557 588 649 1794

Cameroon
DHS 2004 No 2678 2210 1732 6620
DHS 2011 No 3588 3115 2656 9359
PHIA 2017 No 2140 1923 1851 5914
DHS 2018 Yes 3349 2463 2345 8157

Kenya
DHS 2003 No 1819 1709 1391 4919
DHS 2008 No 1767 1743 1420 4930
DHS 2014 No 2861 2534 2858 8253

Lesotho
DHS 2004 No 1761 1456 1026 4243
DHS 2009 No 1834 1545 1195 4574
DHS 2014 No 1537 1293 1069 3899
PHIA 2017 Yes 1156 1202 1054 3412

Mozambique
AIS 2009 No 1031 1106 987 3124
DHS 2011 No 3065 2468 2340 7873
AIS 2015 No 1554 1390 1080 4024

Malawi
DHS 2000 No 2914 2998 2358 8270
DHS 2004 No 2407 2823 2135 7365
DHS 2010 No 5032 4387 4309 13728
DHS 2015 Yes 5273 5094 3976 14343
PHIA 2016 Yes 1646 1934 1511 5091
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Namibia
DHS 2000 No 1428 1313 1099 3840
DHS 2006 No 2203 1870 1544 5617
DHS 2013 No 1852 1709 1482 5043
PHIA 2017 Yes 1491 1525 1370 4386

Eswatini
DHS 2006 No 1265 1027 731 3023
PHIA 2017 No 1031 895 811 2737

Tanzania
AIS 2003 No 1466 1377 1270 4113
AIS 2007 No 2137 1676 1509 5322
DHS 2010 No 2221 1860 1613 5694
AIS 2012 No 2474 1923 1815 6212

Uganda
DHS 2000 No 1687 1541 1326 4554
DHS 2006 No 1948 1661 1406 5015
AIS 2011 No 2451 2164 1921 6536
DHS 2011 No 2025 1664 1614 5303
DHS 2016 Yes 4276 3782 3014 11072
PHIA 2016 No 3289 3059 2574 8922

South Africa
DHS 2016 Yes 1505 1408 1397 4310

Zambia
DHS 2007 No 1598 1405 1373 4376
DHS 2013 No 3685 3036 2789 9510
PHIA 2016 Yes 2120 2045 1619 5784
DHS 2018 Yes 3112 2687 2166 7965

Zimbabwe
DHS 1999 No 1468 1230 1011 3709
DHS 2005 No 2128 1943 1438 5509
DHS 2010 No 1966 1796 1680 5442
DHS 2015 Yes 2154 1779 1647 5580
PHIA 2016 Yes 2114 1817 1573 5504

Total 103063 92173 79734 274970
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Table B.4: All of that household surveys that were excluded from the risk group model
in Section 5.3.

Survey Reason for exclusion
Mozambique 2003 DHS No GPS coordinates available to place survey clusters

within districts.
Tanzania 2015 DHS Insufficient sexual behaviour questions.
Uganda 2004 AIS Unable to download region boundaries.
Zambia 2002 DHS No GPS coordinates available to place survey clusters

within districts.

B.3 Spatial analysis levels

Table B.5: The number of areas and analysis level for each country that was used in
the analysis.

Country Number of areas Analysis level
Botswana 27 Health district
Cameroon 58 Department
Kenya 47 County
Lesotho 10 District
Mozambique 161 District
Malawi 33 Health district and cities
Namibia 38 District
Eswatini 4 Region
Tanzania 195 District
Uganda 136 District
South Africa 52 District
Zambia 116 District
Zimbabwe 63 District

B.4 Survey questions and risk group allocation

Table B.6: The behavioural survey questions included in AIDS Indicator Survey (AIS)
and Demographic and Health Surveys (DHS) used to determine AGYW risk group
membership.

Variable(s) Description
v501 Current marital status of the respondent.
v529 Computed time since last sexual intercourse.
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Variable(s) Description
v531 Age at first sexual intercourse–imputed.
v766b Number of sexual partners during the last 12 months (including

husband).
v767[a, b, c] Relationship with last three sexual partners. Options are:

spouse, boyfriend not living with respondent, other friend, casual
acquaintance, relative, commercial sex worker, live-in partner,
other.

v791a Had sex in return for gifts, cash or anything else in the past 12
months. (Asked only to women 15-24 who are not in a union.)

Table B.7: The behavioural survey questions included in Population-Based HIV Impact
Assessment (PHIA) surveys used to determine AGYW risk group membership.

Variable(s) Description
part12monum Number of sexual partners during the last 12 months

(including husband).
part12modkr Reason for leaving part12monum blank.
partlivew[1, 2, 3] Does the person you had sex with live in this household?
partrelation[1, 2, 3] Relationship with last three sexual partners. Options are:

husband, live-in partner, partner (not living with),
ex-spouse/partner, friend/acquaintance, sex worker, sex
worker client, stranger, other, don’t know, refused.

sellsx12mo Had sex for money and/or gifts in the last 12 months.
buysx12mo Paid money or given gifts for sex in the last 12 months.

B.5 Additional figures
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Figure B.1: The proportion of posterior variance explained by each random effect,
calculated as a ratio of the random effect variance posterior mean to the sum of all
random effect variance posterior means. To allow calculation of this metric by country,
the model was run for each country individually.
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Figure B.2: For the 20-24 and 25-29 age groups, the proportion of AGYW in the one
cohabiting partner and non-regular or multiple partner(s) risk groups was bimodal.
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C.1 Epilepsy example

C.1.1 TMB C++ template

// epil.cpp

#include <TMB.hpp>

template <class Type>

Type objective_function<Type>::operator()()

{

DATA_INTEGER(N);

DATA_INTEGER(J);

DATA_INTEGER(K);

DATA_MATRIX(X);

DATA_VECTOR(y);

DATA_MATRIX(E); // Epsilon matrix

PARAMETER_VECTOR(beta);
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PARAMETER_VECTOR(epsilon);

PARAMETER_VECTOR(nu);

PARAMETER(l_tau_epsilon);

PARAMETER(l_tau_nu);

Type tau_epsilon = exp(l_tau_epsilon);

Type tau_nu = exp(l_tau_nu);

Type sigma_epsilon = sqrt(1 / tau_epsilon);

Type sigma_nu = sqrt(1 / tau_nu);

vector<Type> eta(X * beta + nu + E * epsilon);

vector<Type> lambda(exp(eta));

Type nll;

nll = Type(0.0);

// Note: dgamma() is parameterised as (shape, scale)

// R-INLA is parameterised as (shape, rate)

nll -= dlgamma(l_tau_epsilon, Type(0.001),

Type(1.0 / 0.001), true);

nll -= dlgamma(l_tau_nu, Type(0.001), Type(1.0 / 0.001), true);

nll -= dnorm(epsilon, Type(0), sigma_epsilon, true).sum();

nll -= dnorm(nu, Type(0), sigma_nu, true).sum();

nll -= dnorm(beta, Type(0), Type(100), true).sum();

nll -= dpois(y, lambda, true).sum();

ADREPORT(tau_epsilon);

ADREPORT(tau_nu);
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return(nll);

}

C.1.2 Modified TMB C++ template

// epil_modified.cpp

#include <TMB.hpp>

template <class Type>

Type objective_function<Type>::operator()()

{

DATA_INTEGER(N);

DATA_INTEGER(J);

DATA_INTEGER(K);

DATA_MATRIX(X);

DATA_VECTOR(y);

DATA_MATRIX(E); // Epsilon matrix

DATA_IVECTOR(x_starts); // Start index of each subvector of x

DATA_IVECTOR(x_lengths); // Length of each subvector of x

DATA_INTEGER(i); // Index i

PARAMETER(x_i);

PARAMETER_VECTOR(x_minus_i);

vector<Type> x(301);

int k = 0;

for (int j = 0; j < 301; j++) {

if (j + 1 == i) { // +1 because C++ does zero-indexing
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x(j) = x_i;

} else {

x(j) = x_minus_i(k);

k++;

}

}

vector<Type> beta = x.segment(x_starts(0), x_lengths(0));

vector<Type> epsilon = x.segment(x_starts(1), x_lengths(1));

vector<Type> nu = x.segment(x_starts(2), x_lengths(2));

PARAMETER(l_tau_epsilon);

PARAMETER(l_tau_nu);

Type tau_epsilon = exp(l_tau_epsilon);

Type tau_nu = exp(l_tau_nu);

Type sigma_epsilon = sqrt(1 / tau_epsilon);

Type sigma_nu = sqrt(1 / tau_nu);

vector<Type> eta(X * beta + nu + E * epsilon);

vector<Type> lambda(exp(eta));

Type nll;

nll = Type(0.0);

// Note: dgamma() is parameterised as (shape, scale)

// R-INLA is parameterised as (shape, rate)

nll -= dlgamma(l_tau_epsilon, Type(0.001),

Type(1.0 / 0.001), true);

nll -= dlgamma(l_tau_nu, Type(0.001), Type(1.0 / 0.001), true);

nll -= dnorm(epsilon, Type(0), sigma_epsilon, true).sum();
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nll -= dnorm(nu, Type(0), sigma_nu, true).sum();

nll -= dnorm(beta, Type(0), Type(100), true).sum();

nll -= dpois(y, lambda, true).sum();

ADREPORT(tau_epsilon);

ADREPORT(tau_nu);

return(nll);

}

C.1.3 Stan C++ template

// epil.stan

data {

int<lower=0> N; // Number of patients

int<lower=0> J; // Number of clinic visits

int<lower=0> K; // Number of predictors (inc. intercept)

matrix[N * J, K] X; // Design matrix

int<lower=0> y[N * J]; // Outcome variable

matrix[N * J, N] E; // Epsilon matrix

}

parameters {

vector[K] beta; // Vector of coefficients

vector[N] epsilon; // Patient specific errors

vector[N * J] nu; // Patient-visit errors

real<lower=0> tau_epsilon; // Precision of epsilon

real<lower=0> tau_nu; // Precision of nu
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Figure C.1: Traceplots for the tmbstan parameters with the lowest ESS and highest
potential scale reduction factor. These were l_tau_nu (an ESS of 377) and beta[3] (an
R̂ of 1.006).

}

transformed parameters {

vector[N * J] eta = X * beta + nu + E * epsilon;

}

model {

beta ~ normal(0, 100);

tau_epsilon ~ gamma(0.001, 0.001);

tau_nu ~ gamma(0.001, 0.001);

epsilon ~ normal(0, sqrt(1 / tau_epsilon));

nu ~ normal(0, sqrt(1 / tau_nu));

y ~ poisson_log(eta);

}

C.1.4 NUTS convergence and suitability

C.1.4.1 tmbstan
C.1.4.2 rstan
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Figure C.2: Traceplots for the rstan parameters with the lowest ESS and highest
potential scale reduction factor. These were tau_nu (an ESS of 437) and tau_nu (an R̂ of
1.009). Rather than plotting the traceplot for tau_nu twice, the parameter epsilon[18]
is included, which had the second highest R̂ of 1.008.

Figure C.3: Traceplots for the parameters with the lowest ESS and highest potential
scale reduction factor for the Loa loa ELGM example.

C.2 Loa loa example

C.2.1 NUTS convergence and suitability

C.2.2 Inference comparison
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Figure C.4: Relative difference between the Gaussian and Laplace marginal posterior
means and standard deviations to NUTS results at each u(si), v(si) : i ∈ [190]. Absolute
differences are in Figure 6.14.

C.3 AGHQ with Laplace marginals algorithm

This section provides the INLA-like algorithm for AGHQ with Laplace marginals

used in this thesis. The algorithm for AGHQ with Gaussian marginals used in this

thesis is as given in Stringer et al. (2022), and implemented in the aghq package.

1. Calculate the mode, Hessian at the mode, lower Cholesky, and Laplace
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approximation

θ̂ = arg max
θ

p̃LA(θ,y), (C.1)

Ĥ = − ∂2

∂θ∂θ⊤ log p̃LA(θ,y)|θ=θ̂, (C.2)

Ĥ−1 = L̂L̂⊤, (C.3)

p̃LA(θ,y) = p(y,x,θ)
p̃G(x | θ,y)

∣∣∣∣
x=x̂(θ)

, (C.4)

where p̃G(x | θ,y) = N (x | x̂(θ), Ĥ(θ)−1) is a Gaussian approximation to

p(x | θ,y) with mode and precision matrix given by

x̂(θ) = arg max
x

log p(y,x,θ), (C.5)

Ĥ(θ) = − ∂2

∂x∂x⊤ log p(y,x,θ)|x=x̂(θ). (C.6)

2. Generate a set of nodes u ∈ Q(m, k) and weights ω : u → R from a Gauss-

Hermite quadrature rule with k nodes per dimension. Adapt these nodes based

on the mode and lower Cholesky via θ(u) = θ̂ + Lu. Use this quadrature rule

to calculate the normalising constant p̃AQ(y) as follows

p̃AQ(y) =
∑

u∈Q(m,k)
p̃LA(θ(u),y)ω(u). (C.7)

3. For i ∈ [N ] generate l nodes xi(v) via a Gauss-Hermite quadrature rule v ∈

Q(1, l) adapted based on the mode x̂(θ)i and standard deviation
√

diag[Ĥ(θ)−1]i

of the Gaussian marginal. A value of l ≥ 4 is recommended to enable B-spline

interpolation. For xi ∈ {xi(v)}v∈Q(1,l) and θ ∈ {θ(u)}u∈Q(m,k) calculate the

modes and Hessians

x̂−i(xi,θ) = arg max
x−i

log p(y, xi,x−i,θ), (C.8)

Ĥ−i,−i(xi,θ) = − ∂2

∂x−i∂x⊤
−i

log p(y, xi,x−i,θ)|x−i=x̂−i(xi,θ), (C.9)

where optimisation to obtain x̂−i(xi,θ) can be initialised at x̂(θ)−i.
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4. For xi ∈ {xi(v)}v∈Q(1,l) calculate

pAQ(xi | y) = p̃LA(xi,y)
p̃AQ(y) , (C.10)

where

p̃LA(xi,y) =
∑

u∈Q(m,k)
p̃LA(xi,θ(u),y)ω(u). (C.11)

and

p̃LA(xi,θ,y) = p(xi,x−i,θ,y)
p̃G(x−i |xi,θ,y)

∣∣∣∣
x−i=x̂−i(xi,θ)

. (C.12)

Equation (C.10) can be calculated using the estimate of the evidence given in

Equation (C.7), but it is more numerically accurate, and requires little extra

computation, to use the estimate

p̃AQ(y) =
∑

v∈Q(1,l)
p̃LA(xi(v),y)ω(v) (C.13)

5. Given {xi(v), p̃AQ(xi(v) | y)}v∈Q(1,l) create a spline interpolant to each posterior

marginal on the log-scale. Samples, and thereby relevant posterior marginal

summaries, may be obtained using inverse transform sampling.

C.4 Simplified Naomi model description

This section describes the simplified version of the Naomi model (Jeffrey W Eaton

et al. 2021) in more detail. The concise i indexing used in Section 6.3 is replaced

by a more complete x, s, a indexing. There are four sections:

1. Section C.4.1 gives the process specifications, giving the terms in each

structured additive predictor, along with their distributions.

2. Section C.4.2 gives additional details about the likelihood terms not provided

in Section 6.3.

3. Section C.4.3 gives identifiability constraints used in circumstances where

incomplete data is available for the country.

4. Section C.4.4 provides details of the TMB implementation.
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C.4.1 Process specification

Table C.1: The Naomi model can be conceptualised as having five processes. This table
gives the number of latent field parameters and hyperparameters in each process, where
n is the number of districts in the country.

Model component Latent field Hyperparameter
Section C.4.1.1 HIV prevalence 22 + 5n 9
Section C.4.1.2 ART coverage 25 + 5n 9
Section C.4.1.3 HIV incidence rate 2 + n 3
Section C.4.1.4 ANC testing 2 + 2n 2
Section C.4.1.5 ART attendance n 1

Total 51 + 14n 24

C.4.1.1 HIV prevalence

HIV prevalence ρx,s,a ∈ [0, 1] was modelled on the logit scale using the structured

additive predictor

logit(ρx,s,a) = βρ0 + βρ,s=M
S + uρa + uρ,s=M

a + uρx + uρ,s=M
x + uρ,a<15

x + ηρRx,s,a. (C.14)

Table C.2 provides a description of the terms included in Equation (C.14). Indepen-

dent half-normal prior distributions were chosen for the five standard deviation terms

{σρA, σ
ρ
AS, σ

ρ
X , σ

ρ
XS, σ

ρ
XA} ∼ N +(0, 2.5), (C.15)

independent uniform prior distributions for the two AR1 correlation parameters

{ϕρA, ϕ
ρ
AS} ∼ U(−1, 1), (C.16)

and independent beta prior distributions for the two BYM2 proportion parameters

{ϕρX , ϕ
ρ
XS} ∼ Beta(0.5, 0.5). (C.17)

Table C.2: Each term in Equation (C.14) together with, where applicable, its prior
distribution and a written description of its role.

Term Distribution Description
βρ0 N (0, 5) Intercept
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Term Distribution Description
βρ,s=M
s N (0, 5) The difference in logit prevalence for men

compared to women
uρa AR1(σρA, ϕ

ρ
A) Age random effects for women

uρ,s=M
a AR1(σρAS, ϕ

ρ
AS) Age random effects for the difference in logit

prevalence for men compared to women age a
uρx BYM2(σρX , ϕ

ρ
X) Spatial random effects for women

uρ,s=M
x BYM2(σρXS, ϕ

ρ
XS) Spatial random effects for the difference in

logit prevalence for men compared to women
in district x

uρ,a<15
x ICAR(σρXA) Spatial random effects for the difference in

logit paediatric prevalence to adult women
prevalence in district x

ηρRx,s,a − Fixed offsets specifying assumed odds ratios
for prevalence outside the age ranges for
which data were available. Calculated from
Spectrum model (Stover, Glaubius, et al.
2019) outputs for region Rx

C.4.1.2 ART coverage

ART coverage αx,s,a ∈ [0, 1] was modelled on the logit scale using the structured

additive predictor

logit(αx,s,a) = βα0 + βα,s=M
S + uαa + uα,s=M

a + uαx + uα,s=M
x + uα,a<15

x + ηαRx,s,a (C.18)

with terms and prior distributions analogous to the HIV prevalence process model

in Section C.4.1.1 above.

C.4.1.3 HIV incidence rate

HIV incidence rate λx,s,a > 0 was modelled on the log scale using the structured

additive predictor

log(λx,s,a) = βλ0 + βλ,s=M
S + log(ρ15-49

x ) + log(1 − ω · α15-49
x ) + uλx + ηλRx,s,a. (C.19)

Table C.3 provides a description of the terms included in Equation (C.19).
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Table C.3: Each term in Equation (C.19) together with, where applicable, its prior
distribution and a written description of its role.

Term Distribution Description
βλ0 N (0, 5) Intercept term proportional to the average HIV

transmission rate for untreated HIV positive adults
βλ,s=M
S N (0, 5) The log incidence rate ratio for men compared to

women
ρ15-49
x − The HIV prevalence among adults 15-49 in district x

calculated by aggregating age-specific HIV prevalences
α15-49
x − The ART coverage among adults 15-49 in district x

calculated by aggregating age-specific ART coverages
ω = 0.7 − Average reduction in HIV transmission rate per

increase in population ART coverage fixed based on
inputs to the Estimation and Projection Package
(EPP) model

uλx N (0, σλ) IID spatial random effects with σλ ∼ N +(0, 1)
ηλRx,s,a − Fixed log incidence rate ratios by sex and age group

calculated from Spectrum model outputs for region Rx

The proportion recently infected among HIV positive persons κx,s,a ∈ [0, 1]

was modelled as

κx,s,a = 1 − exp
(

−λx,s,a · 1 − ρx,s,a
ρx,s,a

· (ΩT − βT ) − βT

)
, (C.20)

where ΩT ∼ N (ΩT0 , σ
ΩT ) is the mean duration of recent infection, and βT ∼

N +(βT0 , σ
βT ) is the false recent ratio. The prior distribution for ΩT was informed by

the characteristics of the recent infection testing algorithm. For PHIA surveys this

was ΩT0 = 130 days and σΩT = 6.12 days. For PHIA surveys there was assumed

to be no false recency, such that βT0 = 0.0, σβT = 0.0, and βT = 0.

C.4.1.4 ANC testing

HIV prevalence ρANC
x,a and ART coverage αANC

x,a among pregnant women were

modelled as being offset on the logit scale from the corresponding district-age

indicators ρx,F,a and αx,F,a according to

logit(ρANC
x,a ) = logit(ρx,F,a) + βρ

ANC + uρANC

x + ηρ
ANC

Rx,a , (C.21)

logit(αANC
x,a ) = logit(αx,F,a) + βα

ANC + uαANC

x + ηα
ANC

Rx,a . (C.22)
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Table C.4 provides a description of the terms included in Equation (C.21) and

Equation (C.22).

Table C.4: Each term in Equations (C.21) and (C.22) together with (where applicable)
its prior distribution and a written description of its role. The notation θ is used as stand
in for θ ∈ {ρ, α}.

Term Distribution Description

βθ
ANC N (0, 5) Intercept giving the average difference between

population and ANC outcomes
uθANC
x N (0, σθANC

X ) IID district random effects with σθ
ANC
X ∼ N +(0, 1)

ηθ
ANC
Rx,a − Offsets for the log fertility rate ratios for HIV positive

women compared to HIV negative women and for
women on ART to HIV positive women not on ART,
calculated from Spectrum model outputs for region Rx

In the full Naomi model, for adult women 15-49 the number of ANC clients

Ψx,a > 0 were modelled as

log(Ψx,a) = log(Nx,F,a) + ψRx,a + βψ + uψx , (C.23)

where Nx,F,a are the female population sizes, ψRx,a are fixed age-sex fertility ratios

in Spectrum region Rx, βψ are log rate ratios for the number of ANC clients relative

to the predicted fertility, and uψx ∼ N (0, σψ) are district random effects. Here these

terms are fixed to βψ = 0 and uψx = 0 such that Ψx,a are simply constants.

C.4.1.5 ART attendance

Let γx,x′ ∈ [0, 1] be the probability that a person on ART residing in district

x receives ART in district x′. Assume that γx,x′ = 0 for x /∈ {x, ne(x)} such

that individuals seek treatment only in their residing district or its neighbours

ne(x) = {x′ : x′ ∼ x}, where ∼ is an adjacency relation, and ∑x′∈{x,ne(x)} γx,x′ = 1.

The probabilities γx,x′ for x ∼ x′ were modelled using multinomial logistic

regression model, based on the log-odds ratios

γ̃x,x′ = log
(

γx,x′

1 − γx,x′

)
= γ̃0 + uγ̃x. (C.24)
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Table C.5 provides a description of the terms included in Equation (C.24). Fixing

γ̃x,x = 0 then the multinomial probabilities may be recovered using the softmax

γx,x′ = exp(γ̃x,x′)∑
x⋆∈{x,ne(x)} exp(γ̃x,x⋆) . (C.25)

Table C.5: Each term in Equation (C.24) together with, where applicable, its prior
distribution and a written description of its role. As no terms include x′, γx,x′ is only a
function of x.

Term Distribution Description
γ̃0 − Fixed intercept γ̃0 = −4. Implies a prior

mean on γx,x′ of 1.8%, such that a-priori
(100 − 1.8 × ne(x))% of ART clients in
district x obtain treatment in their home
district

uγ̃x N (0, σγ̃X) District random effects, with
σγ̃X ∼ N +(0, 2.5)

C.4.2 Additional likelihood specification

Though Section 6.3 provides a complete description of Naomi’s likelihood speci-

fication, any additional useful details are provided here.

C.4.2.1 Household survey data

The generalised binomial y ∼ xBin(m, p) is defined for y,m ∈ R+ with

y ≤ m such that

log p(y) = log Γ(m+ 1) − log Γ(y + 1) (C.26)

− log Γ(m− y + 1) + y log p+ (m− y) log(1 − p), (C.27)

where the gamma function Γ is such that ∀n ∈ N, Γ(n) = (n − 1)!.

C.4.3 Identifiability constraints

If data are missing, some parameters are fixed to default values to help with

identifiability. In particular:
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1. If survey data on HIV prevalence or ART coverage by age and sex are not

available then uθa = 0 and uθa,s=M = 0. In this case, the average age-sex

pattern from the Spectrum is used. For the Malawi case-study (Section 6.5),

HIV prevalence and ART coverage data are not available for those aged 65+.

As a result, there are |{0-4, . . . , 50-54}| = 13 age groups included for the age

random effects.

2. If no ART data, either survey or ART programme, are available but data on

ART coverage among ANC clients are available, the level of ART coverage is

not identifiable, but spatial variation is identifiable. In this instance, overall

ART coverage is determined by the Spectrum offset, and only area random

effects are estimated such that

logit (αx,s,a) = uαx + ηαRx,s,a. (C.28)

3. If survey data on recent HIV infection are not included in the model, then

βλ0 = βλ,s=M
S = 0 and uλx = 0. The sex ratio for HIV incidence is determined

by the sex incidence rate ratio from Spectrum, and the incidence rate in

all districts is modelled assuming the same average HIV transmission rate

for untreated adults, but varies according to district-level estimates of HIV

prevalence and ART coverage.

C.4.4 Implementation

The TMB C++ code for the negative log-posterior of the simplified Naomi model

is available from https://github.com/athowes/naomi-aghq. For ease of under-

standing, Table C.6 provides correspondence between the mathematical notation

used in Section C.4 and the variable names used in the TMB code, for all hy-

perparameters and latent field parameters. For further reference on the TMB

software see Kristensen (2021).
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Table C.6: Correspondence between the variable name used in the Naomi TMB template
and the mathematical notation used in Appendix C.4. The parameter type, either a
hyperparameter or element of the latent field, is also given. All of the parameters are
defined on the real-scale in some dimension. In the final three columns (ρ, α, and λ)
indication is given as to which component of the model the parameter is primarily used
in.

Variable name Notation Type Domain ρ α λ

logit_phi_rho_x logit(ϕρX) Hyper R Yes
log_sigma_rho_x log(σρX) Hyper R Yes
logit_phi_rho_xs logit(ϕρXS) Hyper R Yes
log_sigma_rho_xs log(σρXS) Hyper R Yes
logit_phi_rho_a logit(ϕρA) Hyper R Yes
log_sigma_rho_a log(σρA) Hyper R Yes
logit_phi_rho_as logit(ϕρAS) Hyper R Yes
log_sigma_rho_as log(σρAS) Hyper R Yes
log_sigma_rho_xa log(σρXA) Hyper R Yes
logit_phi_alpha_x logit(ϕαX) Hyper R Yes
log_sigma_alpha_x log(σαX) Hyper R Yes
logit_phi_alpha_xs logit(ϕαXS) Hyper R Yes
log_sigma_alpha_xs log(σαXS) Hyper R Yes
logit_phi_alpha_a logit(ϕαA) Hyper R Yes
log_sigma_alpha_a log(σαA) Hyper R Yes
logit_phi_alpha_as logit(ϕαAS) Hyper R Yes
log_sigma_alpha_as log(σαAS) Hyper R Yes
log_sigma_alpha_xa log(σαXA) Hyper R Yes
OmegaT_raw ΩT Hyper R Yes
log_betaT log(βT ) Hyper R Yes
log_sigma_lambda_x log(σλ) Hyper R Yes
log_sigma_ancrho_x log(σρ

ANC

X ) Hyper R Yes
log_sigma_ancalpha_xlog(σαANC

X ) Hyper R Yes
log_sigma_or_gamma log(σγ̃X) Hyper R
beta_rho (βρ0 , βρ,s=M

s ) Latent R2 Yes
beta_alpha (βα0 , β

α,s=M
S ) Latent R2 Yes

beta_lambda (βλ0 , β
λ,s=M
S ) Latent R2 Yes

beta_anc_rho βρ
ANC Latent R Yes

beta_anc_alpha βα
ANC Latent R Yes

u_rho_x wρ
x Latent Rn Yes

us_rho_x vρx Latent Rn Yes
u_rho_xs wρ,s=M

x Latent Rn Yes
us_rho_xs vρ,s=M

x Latent Rn Yes
u_rho_a uρa Latent R10 Yes
u_rho_as uρ,s=M

a Latent R10 Yes
u_rho_xa uρ,a<15

x Latent Rn Yes
u_alpha_x wα

x Latent Rn Yes
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C. Fast approximate Bayesian inference

Figure C.5: For NUTS run on the Naomi ELGM, the maximum potential scale reduction
factor was 1.021, below the value of 1.05 typically used as a cutoff for acceptable chain
mixing, indicating that the results are acceptable to use. Additionally, the vast majority
(93.7%) of R̂ values were less than 1.1.

Variable name Notation Type Domain ρ α λ

us_alpha_x vαx Latent Rn Yes
u_alpha_xs wα,s=M

x Latent Rn Yes
us_alpha_xs vα,s=M

x Latent Rn Yes
u_alpha_a uαa Latent R13 Yes
u_alpha_as uα,s=M

a Latent R10 Yes
u_alpha_xa uα,a<15

x Latent Rn Yes
ui_lambda_x uλx Latent Rn Yes
ui_anc_rho_x uρANC

x Latent Rn Yes
ui_anc_alpha_x uαANC

x Latent Rn Yes
log_or_gamma uγ̃x Latent Rn

C.5 NUTS convergence and suitability

C.6 Use of PCA-AGHQ

C.7 Inference comparison

C.7.1 Point estimates

C.7.2 Distributional quantities
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C. Fast approximate Bayesian inference

Figure C.6: The efficiency of the NUTS, as measured by the ratio of effective sample
size to total number of iterations run, was low for most parameters (Panel A). As a result,
the number of iterations required for the the effective number of samples (mean 1265) to
be satisfactory was high (Panel B).

Figure C.7: Traceplots for the parameter with the lowest ESS which was
log_sigma_alpha_xs (an ESS of 208, Panel A) and highest potential scale reduction
factor which was ui_lambda_x[10] (an R̂ of 1.021, Panel B).
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Figure C.8: Pairs plots for the parameters log(σρA) and logit(ϕρA), or log_sigma_rho_a
and logit_phi_rho_a as implemented in code. These parameters are the log standard
deviation and logit lag-one correlation parameter of an AR1 process. In the posterior
distribution obtained with NUTS, they have a high degree of correlation.

Figure C.9: Pairs plots for the parameters log(σαX) and logit(ϕαX), or
log_sigma_alpha_x and logit_phi_alpha_x as implemented in code. These parameters
are the log standard deviation and logit BYM2 proportion parameter of a BYM2 process.
In the posterior distribution obtained with NUTS, they are close to uncorrelated.
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Figure C.10: Prior standard deviations were calculated by using NUTS to simulate
from the prior distribution. This approach is more convenient than simulating directly
from the model, but can lead to inaccuracies.
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C. Fast approximate Bayesian inference

Figure C.11: The posterior contraction for each parameter in the model. Values are
averaged for parameters of length greater than one. The posterior contraction is zero
when the prior distribution and posterior distribution have the same standard deviation.
This could indicate that the data is not informative about the parameter. The closer the
posterior contraction is to one, the more than the marginal posterior distribution has
concentrated about a single point.
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Figure C.12: The standard deviation of the quadrature nodes can be used as a measure of
coverage of the posterior marginal distribution. Nodes spaced evenly within the marginal
distribution would be expected to uniformly distributed quantile, corresponding to a
standard deviation of 0.2885, shown as a dashed line.

Figure C.13: The estimated posterior marginal standard deviation of each hyperparam-
eter varied substantially based on its scale, either logarithmic or logistic.
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C. Fast approximate Bayesian inference

Figure C.14: The logarithm of the normalising constant estimated using PCA-AGHQ
and a range of possible values of k = 2, 3, 5 and s ≤ 8. Using this range of settings, there
was not convergence of the logarithm of the normalising constant estimate. The time
taken by GPCA-AGHQ increases exponentially with number of PCA-AGHQ dimensions
kept.
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Figure C.15: Differences in Naomi model output posterior means as estimated by GEB
and GPCA-AGHQ compared to NUTS. Each point is an estimate of the indicator for a
particular strata. In all cases, error is reduced by GPCA-AGHQ, most of all for ART
coverage.
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Figure C.16: Differences in Naomi model output posterior standard deviations as
estimated by GEB and GPCA-AGHQ compared to NUTS. Each point is an estimate
of the indicator for a particular strata. Error is increased by GPCA-AGHQ for HIV
prevalence and HIV incidence, and reduced for ART coverage.
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Figure C.17: The Kolmogorov-Smirnov (KS) test statistic for each latent field parameter
is correlated with the effective sample size (ESS) from NUTS, for both GEB and GPCA-
AGHQ. This may be because parameters which are harder to estimate with INLA-
like methods also have posterior distributions which are more difficult to sample from.
Alternatively, it may be that high KS values are caused by inaccurate NUTS estimates
generated by limited effective samples.
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