Bayesian spatio-temporal methods for small-area estimation of HIV indicators

Adam Howes

Imperial College London

March 2023

Bayesian

Use probability distributions for all unknowns

Posterior \propto Likelihood \times Prior $p(\phi \mid \mathbf{y}) \propto p(\mathbf{y} \mid \phi) \times p(\phi)$

Spatio-temporal

Observed data has spatial and temporal location

```
y_{s,t} where s is space and t is time
```


В

Small-area estimation

Sample size for demographic subgroups too low for precise direct estimates By space s and time t together with other factors like age and sex

Toy example! But the same principle applies to real models

e.g. Naomi¹ (Eaton et al. 2021; Esra et al. 2024)

"Now I understand how Naomi works!" — Anonymous, fictionalised, workshop participant

¹See C.4 Simplified Naomi model description for details

Source: UNAIDS Naomi model estimates, 2023

Nearby things tend to be similar

Suppose prior correlation structure between observations!

Gaussian Markov random field model of Besag, York, and Mollié (1991)

Measure forecast performance using strictly proper scoring rules

Evaluates the whole distribution and does not incentivize dishonesty (Gneiting and Raftery 2007)

Model comparison on real data is more challenging than with simulated data

Information criteria: adjust within-sample scoring rule performance Cross-validation: partition data to estimate out-of-sample scoring rule performance

I'd recommend Vehtari (2020) for an overview

GLOBAL AIDS STRATEGY 2021-2026 END INEQUALITIES. END AIDS.

Does the survey include a specific question about transactional sex?

🔺 Yes 🌑 No

Use the multinomial-Poisson transformation of Baker (1994)

A multinomial logistic regression on $\mathbf{y} = (y_1, \dots, y_K)$ can be expressed as a Poisson regression

 $y_k \sim \mathsf{Poisson}(\lambda_k)$

with observation-specific random effects with recover the sample size $m = \sum_{k} y_{k}$. See blog post (Howes 2023)

Regions of sub-Saharan Africa 😑 Central 🔵 Eastern 🔶 Southern

Not sexually active (not shown) + one cohabiting partner + non-regular or multiple partner(s) + FSW (not shown) = 100%

Since extended to include 1) males, 2) additional countries

See the sub-national HIV estimates in priority populations UNAIDS tool at hivtools.unaids.org/shipp/

Bayesian computation amounts mostly to solving challenging integrals

$$p(\mathbf{y}) = \int p(\mathbf{y}, oldsymbol{\phi}) \mathrm{d} oldsymbol{\phi}$$

Methods can broadly be divided into "stochastic" and "deterministic"

You're right that INLA and R-INLA are often synonymous. From an applied perspective, models which (for one reason or another) cannot be written using R-INLA's formula interface are typically outside the remit of the INLA inference algorithm.

6:42 PM \cdot Feb 28, 2024 \cdot 155 Views

III View post engagements

. . .

Gaussian

Acknowledgements

Collaborator(s)	Affiliation
Jeff Eaton	Imperial, Harvard
Seth Flaxman	Oxford
Alex Stringer	Waterloo
HIV Inference Group	Imperial
Machine Learning and Global Health Network StatML CDT	Worldwide Imperial, Oxford

What am I up to now?

- Nowcasting food insecurity with the WFP using MRP and active learning
- Starting forecasting work with CDC soon especially interested in disease-agnostic methods and data source integration
- Still based in London! Keep in touch

References I

- Baker, Stuart G. 1994. "The multinomial-Poisson transformation." Journal of the Royal Statistical Society: Series D (The Statistician) 43 (4): 495–504.
 Besag, Julian, Jeremy York, and Annie Mollié. 1991. "Bayesian image restoration, with two applications in spatial statistics." Annals of the Institute of Statistical Mathematics 43 (1): 1–20.
 Eaton, Jeffrey W. Laura Dwver-Lindgren, Steve Gutreuter, Megan O'Driscoll.
- Oliver Stevens, Sumali Bajaj, Rob Ashton, et al. 2021. "Naomi: a new modelling tool for estimating HIV epidemic indicators at the district level in sub-Saharan Africa." *Journal of the International AIDS Society* 24: e25788.

References II

- Esra, Rachel, Mpho Mmelesi, Akeem T. Ketlogetswe, Timothy M. Wolock, Adam Howes, Tlotlo Nong, Matshelo Tina Matlhaga, Siphiwe Ratladi, Dinah Ramaabya, and Jeffrey W. Imai-Eaton. 2024. "Improved Indicators for Subnational Unmet Antiretroviral Therapy Need in the Health System: Updates to the Naomi Model in 2023." JAIDS Journal of Acquired Immune Deficiency Syndromes 95 (1S): e24–33. https://doi.org/10.1097/QAI.00000000003324.
- Gneiting, Tilmann, and Adrian E Raftery. 2007. "Strictly proper scoring rules, prediction, and estimation." *Journal of the American Statistical Association* 102 (477): 359–78.
- Howes, Adam. 2023. "Adam Howes: Estimating Risk Group Proportions: Informal Discussion."
 - https://athowes.github.io/posts/2023-04-21-risk-group-retrospective/.

References III

Vehtari, Aki. 2020. "Cross-Validation FAQ." *Model Selection Tutorials and Talks*.